691 research outputs found

    Spectrum Sharing in Wireless Networks via QoS-Aware Secondary Multicast Beamforming

    Get PDF
    Secondary spectrum usage has the potential to considerably increase spectrum utilization. In this paper, quality-of-service (QoS)-aware spectrum underlay of a secondary multicast network is considered. A multiantenna secondary access point (AP) is used for multicast (common information) transmission to a number of secondary single-antenna receivers. The idea is that beamforming can be used to steer power towards the secondary receivers while limiting sidelobes that cause interference to primary receivers. Various optimal formulations of beamforming are proposed, motivated by different ldquocohabitationrdquo scenarios, including robust designs that are applicable with inaccurate or limited channel state information at the secondary AP. These formulations are NP-hard computational problems; yet it is shown how convex approximation-based multicast beamforming tools (originally developed without regard to primary interference constraints) can be adapted to work in a spectrum underlay context. Extensive simulation results demonstrate the effectiveness of the proposed approaches and provide insights on the tradeoffs between different design criteria

    Robust provisioning of multicast sessions in cognitive radio networks

    Get PDF
    Today\u27s wireless networks use fixed spectrum over long term and fixed geographical regions. However, spectrum utilization varies by time and location, which leads to temporal and special spectrum underutilization. Therefore, new ways to improve spectrum utilization are needed. Cognitive radio is an emerging technology that enables dynamic sharing of the spectrum in order to overcome spectrum underutilization problem. Users in cognitive radio networks are either primary or secondary users. A primary user is the user who is licensed to use a channel, and has priority to use it over any other user. The secondary user uses a licensed spectrum channel opportunistically when a primary user is idle. Hence, it has to vacate the channel within a certain tolerable interference time when the primary user appears. As a result of this, the secondary user needs to find backup channels to protect the links it is using from primary user\u27s interruption. In this thesis, we concentrate on supporting the multicast service mode using cognitive radio networks. Moreover, we are concerned with supporting this mode of service such that it is robust in the face of failures. The type of failures we are interested in is channel disappearance due to the resumption of activities by primary users. We develop three algorithms which provide robust multicasting in such networks. Our three proposed algorithms are: 1) multicast sessions protection without link-sharing, 2) multicast sessions protection with link-sharing and 3) multicast sessions protection using rings. These algorithms provision multiple multicast sessions, and protect them against single primary user interruption at a time. They also take into account that the activities of a primary user may disrupt communication in several groups, of secondary users, which are referred to as Shared Primary User Risk Group (SPURG). The objective of the proposed algorithms is to increase the number of sessions that can be accommodated in the network and minimize the cost of provisioning the sessions. Multicast sessions protection with/without link-sharing algorithms generate a primary tree for each multicast session, and protect each link of it using a backup tree. Multicast sessions protection with link-sharing allows backup trees to share some links of the primary tree within the same session, and share some links within backup trees for any session. In the third algorithm, a ring is generated where it starts and ends at the source node, and passes through all destination nodes. Also, we compare the performances of our three proposed algorithms. Simulation results show that the number of accommodated sessions in the network increases and the cost of multicast sessions decreases when the number of available channels increases or the session size decreases. Also, multicast sessions protection with link-sharing algorithm outperforms the other two algorithms in terms of the number of sessions in the network. On the other hand, multicast sessions protection using rings achieves the lowest cost for multicast sessions compared with the other two proposed algorithms

    Security enhancement using a novel two-slot cooperative NOMA scheme

    Get PDF
    In this letter, we propose a novel cooperative non-orthogonal multiple access (NOMA) scheme to guarantee the secure transmission of a specific user via two time slots. During the first time slot, the base station (BS) transmits the superimposed signal to the first user and the relay via NOMA. Meanwhile, the signal for the first user is also decoded at the second user from the superimposed signal due to its high transmit power. In the second time slot, the relay forwards the signal to the second user while the BS retransmits the signal for the first user as interference to disrupt the eavesdropping. Due to the fact that the second user has obtained the signal for the first user in the first slot, the interference can be eliminated at the second user. To measure the performance of the proposed cooperative NOMA scheme, the outage probability for the first user and the secrecy outage probability for the second user are analyzed. Simulation results are presented to show the effectiveness of the proposed scheme

    Performance analysis of multilayer multicast MANET CRN based on steiner minimal tree algorithm

    Get PDF
    In this study, the multicast mobile ad hoc (MANET) CRN has been developed, which involves multi-hop and multilayer consideration and Steiner minimal tree (SMT) algorithm is employed as the router protocol. To enhance the network performance with regards to throughput and packet delivery rate (PDR), as channel assignment scheme, the probability of success (POS) is employed that accounts for the channel availability and the time needed for transmission when selecting the best channel from the numerous available channels for data transmission from the source to all destinations nodes effectively. Within Rayleigh fading channels under various network parameters, a comparison is done for the performance of SMT multicast (MANET) CRN with POS scheme versus maximum data rate (MDR), maximum average spectrum availability (MASA) and random channel assignment schemes. Based on the simulation results, the SMT multicast (MANET) CRN with POS scheme was seen to demonstrate the best performance versus other schemes. Also the results proved that the throughput and PDR performance are improved as the number the primary channels and the channel’s bandwidth increased while dropped as the value of packet size D increased. The network’s performance grew with rise in the value of idle probability (P_I) since the primary user’s (PU) traffic load is low when the value of P_I is high
    • …
    corecore