184 research outputs found

    Information Spectrum Approach to Second-Order Coding Rate in Channel Coding

    Full text link
    Second-order coding rate of channel coding is discussed for general sequence of channels. The optimum second-order transmission rate with a constant error constraint ϵ\epsilon is obtained by using the information spectrum method. We apply this result to the discrete memoryless case, the discrete memoryless case with a cost constraint, the additive Markovian case, and the Gaussian channel case with an energy constraint. We also clarify that the Gallager bound does not give the optimum evaluation in the second-order coding rate

    Second-Order Coding Rate of Quasi-Static Rayleigh-Product MIMO Channels

    Full text link
    With the development of innovative applications that require high reliability and low latency, ultra-reliable and low latency communications become critical for wireless networks. In this paper, the second-order coding rate of the coherent quasi-static Rayleigh-product MIMO channel is investigated. We consider the coding rate within O(1/\sqrt(Mn)) of the capacity, where M and n denote the number of transmit antennas and the blocklength, respectively, and derive the closed-form upper and lower bounds for the optimal average error probability. This analysis is achieved by setting up a central limit theorem (CLT) for the mutual information density (MID) with the assumption that the block-length, the number of the scatterers, and the number of the antennas go to infinity with the same pace. To obtain more physical insights, the high and low SNR approximations for the upper and lower bounds are also given. One interesting observation is that rank-deficiency degrades the performance of MIMO systems with FBL and the fundamental limits of the Rayleigh-product channel approaches those of the single Rayleigh case when the number of scatterers approaches infinity. Finally, the fitness of the CLT and the gap between the derived bounds and the performance of practical LDPC coding are illustrated by simulations

    Finite-Blocklength Bounds for Wiretap Channels

    Full text link
    This paper investigates the maximal secrecy rate over a wiretap channel subject to reliability and secrecy constraints at a given blocklength. New achievability and converse bounds are derived, which are shown to be tighter than existing bounds. The bounds also lead to the tightest second-order coding rate for discrete memoryless and Gaussian wiretap channels.Comment: extended version of a paper submitted to ISIT 201

    Second-Order Coding Rates for Conditional Rate-Distortion

    Full text link
    This paper characterizes the second-order coding rates for lossy source coding with side information available at both the encoder and the decoder. We first provide non-asymptotic bounds for this problem and then specialize the non-asymptotic bounds for three different scenarios: discrete memoryless sources, Gaussian sources, and Markov sources. We obtain the second-order coding rates for these settings. It is interesting to observe that the second-order coding rate for Gaussian source coding with Gaussian side information available at both the encoder and the decoder is the same as that for Gaussian source coding without side information. Furthermore, regardless of the variance of the side information, the dispersion is 1/21/2 nats squared per source symbol.Comment: 20 pages, 2 figures, second-order coding rates, finite blocklength, network information theor
    • …
    corecore