442 research outputs found

    Modeling transport of charged species in pore networks: solution of the Nernst-Planck equations coupled with fluid flow and charge conservation equations

    Get PDF
    A pore network modeling (PNM) framework for the simulation of transport of charged species, such as ions, in porous media is presented. It includes the Nernst-Planck (NP) equations for each charged species in the electrolytic solution in addition to a charge conservation equation which relates the species concentration to each other. Moreover, momentum and mass conservation equations are adopted and there solution allows for the calculation of the advective contribution to the transport in the NP equations. The proposed framework is developed by first deriving the numerical model equations (NMEs) corresponding to the partial differential equations (PDEs) based on several different time and space discretization schemes, which are compared to assess solutions accuracy. The derivation also considers various charge conservation scenarios, which also have pros and cons in terms of speed and accuracy. Ion transport problems in arbitrary pore networks were considered and solved using both PNM and finite element method (FEM) solvers. Comparisons showed an average deviation, in terms of ions concentration, between PNM and FEM below 5%5\% with the PNM simulations being over 104{10}^{4} times faster than the FEM ones for a medium including about 104{10}^{4} pores. The improved accuracy is achieved by utilizing more accurate discretization schemes for both the advective and migrative terms, adopted from the CFD literature. The NMEs were implemented within the open-source package OpenPNM based on the iterative Gummel algorithm with relaxation. This work presents a comprehensive approach to modeling charged species transport suitable for a wide range of applications from electrochemical devices to nanoparticle movement in the subsurface

    Fluctuation-enhanced electric conductivity in electrolyte solutions

    Full text link
    In this letter we analyze the effects of an externally applied electric field on thermal fluctuations for a fluid containing charged species. We show in particular that the fluctuating Poisson-Nernst-Planck equations for charged multispecies diffusion coupled with the fluctuating fluid momentum equation, result in enhanced charge transport. Although this transport is advective in nature, it can macroscopically be represented as electrodiffusion with renormalized electric conductivity. We calculate the renormalized electric conductivity by deriving and integrating the structure factor coefficients of the fluctuating quantities and show that the renormalized electric conductivity and diffusion coefficients are consistent although they originate from different noise terms. In addition, the fluctuating hydrodynamics approach recovers the electrophoretic and relaxation corrections obtained by Debye-Huckel-Onsager theory, and provides a quantitative theory that predicts a non-zero cross-diffusion Maxwell-Stefan coefficient that agrees well with experimental measurements. Finally, we show that strong applied electric fields result in anisotropically enhanced velocity fluctuations and reduced fluctuations of salt concentrations.Comment: 12 pages, 1 figur

    Controlling turbulent drag across electrolytes using electric fields

    Full text link
    Reversible in operando control of friction is an unsolved challenge crucial to industrial tribology. Recent studies show that at low sliding velocities, this control can be achieved by applying an electric field across electrolyte lubricants. However, the phenomenology at high sliding velocities is yet unknown. In this paper, we investigate the hydrodynamic friction across electrolytes under shear beyond the transition to turbulence. We develop a novel, highly parallelised, numerical method for solving the coupled Navier-Stokes Poisson-Nernest-Planck equation. Our results show that turbulent drag cannot be controlled across dilute electrolyte using static electric fields alone. The limitations of the Poisson-Nernst-Planck formalism hints at ways in which turbulent drag could be controlled using electric fields.Comment: Accepted by the Faraday Discussions on Chemical Physics of Electroactive Material
    • …
    corecore