5,496 research outputs found
Fission yeast sec3 bridges the exocyst complex to the actin cytoskeleton.
The exocyst complex tethers post-Golgi secretory vesicles to the plasma membrane prior to docking and fusion. In this study, we identify Sec3, the missing component of the Schizosaccharomyces pombe exocyst complex (SpSec3). SpSec3 shares many properties with its orthologs, and its mutants are rescued by human Sec3/EXOC1. Although involved in exocytosis, SpSec3 does not appear to mark the site of exocyst complex assembly at the plasma membrane. It does, however, mark the sites of actin cytoskeleton recruitment and controls the organization of all three yeast actin structures: the actin cables, endocytic actin patches and actomyosin ring. Specifically, SpSec3 physically interacts with For3 and sec3 mutants have no actin cables as a result of a failure to polarize this nucleating formin. SpSec3 also interacts with actin patch components and sec3 mutants have depolarized actin patches of reduced endocytic capacity. Finally, the constriction and disassembly of the cytokinetic actomyosin ring is compromised in these sec3 mutant cells. We propose that a role of SpSec3 is to spatially couple actin machineries and their independently polarized regulators. As a consequence of its dual role in secretion and actin organization, Sec3 appears as a major co-ordinator of cell morphology in fission yeast.This work was supported
by Cancer Research UK (T. T.)
Fission yeast sec3 bridges the exocyst complex to the actin cytoskeleton.
The exocyst complex tethers post-Golgi secretory vesicles to the plasma membrane prior to docking and fusion. In this study, we identify Sec3, the missing component of the Schizosaccharomyces pombe exocyst complex (SpSec3). SpSec3 shares many properties with its orthologs, and its mutants are rescued by human Sec3/EXOC1. Although involved in exocytosis, SpSec3 does not appear to mark the site of exocyst complex assembly at the plasma membrane. It does, however, mark the sites of actin cytoskeleton recruitment and controls the organization of all three yeast actin structures: the actin cables, endocytic actin patches and actomyosin ring. Specifically, SpSec3 physically interacts with For3 and sec3 mutants have no actin cables as a result of a failure to polarize this nucleating formin. SpSec3 also interacts with actin patch components and sec3 mutants have depolarized actin patches of reduced endocytic capacity. Finally, the constriction and disassembly of the cytokinetic actomyosin ring is compromised in these sec3 mutant cells. We propose that a role of SpSec3 is to spatially couple actin machineries and their independently polarized regulators. As a consequence of its dual role in secretion and actin organization, Sec3 appears as a major co-ordinator of cell morphology in fission yeast.This work was supported
by Cancer Research UK (T. T.)
Bem1p contributes to secretory pathway polarization through a direct interaction with Exo70p.
The exocyst serves to tether secretory vesicles to cortical sites specified by polarity determinants, in preparation for fusion with the plasma membrane. Although most exocyst components are brought to these sites by riding on secretory vesicles as they are actively transported along actin cables, Exo70p displays actin-independent localization to these sites, implying an interaction with a polarity determinant. Here we show that Exo70p directly and specifically binds to the polarity determinant scaffold protein Bem1p. The interaction involves multiple domains of both Exo70p and Bem1p. Mutations in Exo70p that disrupt its interaction with Bem1, without impairing its interactions with other known binding partners, lead to the loss of actin-independent localization. Synthetic genetic interactions confirm the importance of the Exo70p-Bem1p interaction, although there is some possible redundancy with Sec3p and Sec15p, other exocyst components that also interact with polarity determinants. Similar to Sec3p, the actin-independent localization of Exo70p requires a synergistic interaction with the phosphoinositide PI(4,5)P2
The casein kinases Yck1p and Yck2p act in the secretory pathway, in part, by regulating the Rab exchange factor Sec2p.
Sec2p is a guanine nucleotide exchange factor that activates Sec4p, the final Rab GTPase of the yeast secretory pathway. Sec2p is recruited to secretory vesicles by the upstream Rab Ypt32p acting in concert with phosphatidylinositol-4-phosphate (PI(4)P). Sec2p also binds to the Sec4p effector Sec15p, yet Ypt32p and Sec15p compete against each other for binding to Sec2p. We report here that the redundant casein kinases Yck1p and Yck2p phosphorylate sites within the Ypt32p/Sec15p binding region and in doing so promote binding to Sec15p and inhibit binding to Ypt32p. We show that Yck2p binds to the autoinhibitory domain of Sec2p, adjacent to the PI(4)P binding site, and that addition of PI(4)P inhibits Sec2p phosphorylation by Yck2p. Loss of Yck1p and Yck2p function leads to accumulation of an intracellular pool of the secreted glucanase Bgl2p, as well as to accumulation of Golgi-related structures in the cytoplasm. We propose that Sec2p is phosphorylated after it has been recruited to secretory vesicles and the level of PI(4)P has been reduced. This promotes Sec2p function by stimulating its interaction with Sec15p. Finally, Sec2p is dephosphorylated very late in the exocytic reaction to facilitate recycling
Sec6 mutations and the Drosophila exocyst complex
To allow a detailed analysis of exocyst function in multicellular organisms, we have generated sec6 mutants in Drosophila. We have used these mutations to compare the phenotypes of sec6 and sec5 in the ovary and nervous system, and we find them to be similar. We also find that Sec5 is mislocalized in sec6 mutants. Additionally, we have generated an epitope-tagged Sec8 that localized with Sec5 on oocyte membranes and was mislocalized in sec5 and sec6 germ-line clones. This construct further revealed a genetic interaction of sec8 and sec5. These data, taken together, provide new information about the organization of the exocyst complex and suggest that Sec5, Sec6 and Sec8 act as a complex, each member dependent on the others for proper localization and function
Comparison of a linear and a nonlinear washout for motion simulators utilizing objective and subjective data from CTOL transport landing approaches
Objective and subjective data gathered in the processes of comparing a linear and a nonlinear washout for motion simulators reveal that there is no difference in the pilot performance measurements used during instrument landing system (ILS) approaches with a Boeing 737 conventional takeoff and landing (CTOL) airplane between fixed base, linear washout, and nonlinear washout operations. However, the subjective opinions of the pilots reveal an important advance in motion cue presentation. The advance is not in the increased cue available over a linear filter for the same amount of motion base travel but rather in the elimination of false rotational rate cues presented by linear filters
Creating Small Area Income Deprivation Estimates For Northern Ireland: Spatial Microsimulation Modelling
This paper describes results from a preliminary investigation of the value of a spatial microsimulation technique in the estimation, for each SOA in Northern Ireland, of the incidence of income poverty as measured by the proportion of households whose income is below 60% of the UK median household income (%HBAI). In this paper we describe the spatial microsimulation approach and then present small area (SOA) estimates of median household income validated against the equivalent measure NIMDM 2005 income domain score, and the Experian 2005 median income estimates. We then turn to the %HBAI estimates and describe firstly results based on unequivalised gross income for 2004/5 using the FRS 2004/5 and the UK Census 2001. We then discuss results equivalised net household income before housing costs for 2003/5 using the UK Census 2001 and a pooled 2003/4 and 2004/5 FRS dataset. We discuss the results of validation against the source FRS and against the NIMDM income domain score. The paper concludes with a summary of the findings and recommendations for further work
Visualization of the exocyst complex dynamics at the plasma membrane of Arabidopsis thaliana
The exocyst complex, an effector of Rho and Rab GTPases, is believed to function as an exocytotic vesicle tether at the plasma membrane before soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex formation. Exocyst subunits localize to secretory-active regions of the plasma membrane, exemplified by the outer domain of Arabidopsis root epidermal cells. Using variable-angle epifluorescence microscopy, we visualized the dynamics of exocyst subunits at this domain. The subunits colocalized in defined foci at the plasma membrane, distinct from endocytic sites. Exocyst foci were independent of cytoskeleton, although prolonged actin disruption led to changes in exocyst localization. Exocyst foci partially overlapped with vesicles visualized by VAMP721 v-SNARE, but the majority of the foci represent sites without vesicles, as indicated by electron microscopy and drug treatments, supporting the concept of the exocyst functioning as a dynamic particle. We observed a decrease of SEC6-green fluorescent protein foci in an exo70A1 exocyst mutant. Finally, we documented decreased VAMP721 trafficking to the plasma membrane in exo70A1 and exo84b mutants. Our data support the concept that the exocyst-complex subunits dynamically dock and undock at the plasma membrane to create sites primed for vesicle tethering
- …
