50,064 research outputs found
Improved Decoding of Staircase Codes: The Soft-aided Bit-marking (SABM) Algorithm
Staircase codes (SCCs) are typically decoded using iterative bounded-distance
decoding (BDD) and hard decisions. In this paper, a novel decoding algorithm is
proposed, which partially uses soft information from the channel. The proposed
algorithm is based on marking certain number of highly reliable and highly
unreliable bits. These marked bits are used to improve the
miscorrection-detection capability of the SCC decoder and the error-correcting
capability of BDD. For SCCs with -error-correcting
Bose-Chaudhuri-Hocquenghem component codes, our algorithm improves upon
standard SCC decoding by up to ~dB at a bit-error rate (BER) of
. The proposed algorithm is shown to achieve almost half of the gain
achievable by an idealized decoder with this structure. A complexity analysis
based on the number of additional calls to the component BDD decoder shows that
the relative complexity increase is only around at a BER of .
This additional complexity is shown to decrease as the channel quality
improves. Our algorithm is also extended (with minor modifications) to product
codes. The simulation results show that in this case, the algorithm offers
gains of up to ~dB at a BER of .Comment: 10 pages, 12 figure
On Achievable Rates for Long-Haul Fiber-Optic Communications
Lower bounds on mutual information (MI) of long-haul optical fiber systems
for hard-decision and soft-decision decoding are studied. Ready-to-use
expressions to calculate the MI are presented. Extensive numerical simulations
are used to quantify how changes in the optical transmitter, receiver, and
channel affect the achievable transmission rates of the system. Special
emphasis is put to the use of different quadrature amplitude modulation
formats, channel spacings, digital back-propagation schemes and probabilistic
shaping. The advantages of using MI over the prevailing -factor as a figure
of merit of coded optical systems are also highlighted.Comment: Hard decision mutual information analysis added, two typos correcte
Robust streaming in delay tolerant networks
Delay Tolerant Networks (DTN) do not provide any end to end connectivity guarantee. Thus, transporting data over such networks is a tough challenge as most of Internet applications assume a form of persistent end to end connection. While research in DTN has mainly addressed the problem of routing in various mobility contexts with the aim to improve bundle delay delivery and data delivery ratio, little attention has been paid to applications. This paper investigates the support of streaming-like applications over DTN. We identify how DTN characteristics impact on the overall performances of these applications and present Tetrys, a transport layer mechanism, which enables robust streaming over DTN. Tetrys is based on an
on the fly coding mechanism able to ensure full reliability without retransmission and fast in-order bundle delivery in comparison to classical erasure coding schemes. We evaluate our Tetrys prototype on real DTN connectivity traces captured from the Rollerblading tour in Paris. Simulations show that on average, Tetrys clearly outperforms all other reliability schemes in terms of bundles delivery service
An Adaptive Entanglement Distillation Scheme Using Quantum Low Density Parity Check Codes
Quantum low density parity check (QLDPC) codes are useful primitives for
quantum information processing because they can be encoded and decoded
efficiently. Besides, the error correcting capability of a few QLDPC codes
exceeds the quantum Gilbert-Varshamov bound. Here, we report a numerical
performance analysis of an adaptive entanglement distillation scheme using
QLDPC codes. In particular, we find that the expected yield of our adaptive
distillation scheme to combat depolarization errors exceed that of Leung and
Shor whenever the error probability is less than about 0.07 or greater than
about 0.28. This finding illustrates the effectiveness of using QLDPC codes in
entanglement distillation.Comment: 12 pages, 6 figure
HARQ Buffer Management: An Information-Theoretic View
A key practical constraint on the design of Hybrid automatic repeat request
(HARQ) schemes is the size of the on-chip buffer that is available at the
receiver to store previously received packets. In fact, in modern wireless
standards such as LTE and LTE-A, the HARQ buffer size is one of the main
drivers of the modem area and power consumption. This has recently highlighted
the importance of HARQ buffer management, that is, of the use of buffer-aware
transmission schemes and of advanced compression policies for the storage of
received data. This work investigates HARQ buffer management by leveraging
information-theoretic achievability arguments based on random coding.
Specifically, standard HARQ schemes, namely Type-I, Chase Combining and
Incremental Redundancy, are first studied under the assumption of a
finite-capacity HARQ buffer by considering both coded modulation, via Gaussian
signaling, and Bit Interleaved Coded Modulation (BICM). The analysis sheds
light on the impact of different compression strategies, namely the
conventional compression log-likelihood ratios and the direct digitization of
baseband signals, on the throughput. Then, coding strategies based on layered
modulation and optimized coding blocklength are investigated, highlighting the
benefits of HARQ buffer-aware transmission schemes. The optimization of
baseband compression for multiple-antenna links is also studied, demonstrating
the optimality of a transform coding approach.Comment: submitted to IEEE International Symposium on Information Theory
(ISIT) 2015. 29 pages, 12 figures, submitted to journal publicatio
- …
