4,177 research outputs found

    Searching for Invariants using Temporal Resolution

    Get PDF
    Abstract. In this paper, we show how the clausal temporal resolution technique developed for temporal logic provides an effective method for searching for invariants, and so is suitable for mechanising a wide class of temporal problems. We demonstrate that this scheme of searching for invariants can be also applied to a class of multi-predicate induction problems represented by mutually recursive definitions. Completeness of the approach, examples of the application of the scheme, and overview of the implementation are described.

    Influence of the definition of dissipative events on their statistics

    Full text link
    A convenient and widely used way to study the turbulent plasma in the solar corona is to do statistics of properties of events (or structures), associated with flares, that can be found in observations or in numerical simulations. Numerous papers have followed such a methodology, using different definitions of an event, but the reasons behind the choice of a particular definition (and not another one) is very rarely discussed. We give here a comprehensive set of possible event definitions starting from a one-dimensional data set such as a time-series of energy dissipation. Each definition is then applied to a time-series of energy dissipation issued from simulations of a shell-model of magnetohydrodynamic turbulence as defined in Giuliani and Carbone (1998), or from a new model of coupled shell-models designed to represent a magnetic loop in the solar corona. We obtain distributions of the peak dissipation power, total energy, duration and waiting-time associated to each definition. These distributions are then investigated and compared, and the influence of the definition of an event on statistics is discussed. In particular, power-law distributions are more likely to appear when using a threshold. The sensitivity of the distributions to the definition of an event seems also to be weaker for events found in a highly intermittent time series. Some implications on statistical results obtained from observations are discussed.Comment: 8 pages, 13 figures. Submitted to Astronomy&Astrophysic

    On the Expressive Power of the Normal Form for Branching-Time Temporal logics

    Get PDF
    With the emerging applications that involve complex distributed systems branching-time specifications are specifically important as they reflect dynamic and non-deterministic nature of such applications. We describe the expressive power of a simple yet powerful branching-time specification framework – branching-time normal form, which has been developed as part of clausal resolution for branching-time temporal logics. We show the encoding of B¨uchi Tree Automata in the language of the normal form, thus representing, syntactically, tree automata in a high-level way. Thus we can treat BNF as a normal form for the latter. These results enable us (1) to translate given problem specifications into the normal form and apply as a verification method a deductive reasoning technique – the clausal temporal resolution; (2) to apply one of the core components of the resolution method - the loop searching to extract, syntactically, hidden invariants in a wide range of complex temporal specifications
    • …
    corecore