2,207 research outputs found

    Lifelong Sequential Modeling with Personalized Memorization for User Response Prediction

    Full text link
    User response prediction, which models the user preference w.r.t. the presented items, plays a key role in online services. With two-decade rapid development, nowadays the cumulated user behavior sequences on mature Internet service platforms have become extremely long since the user's first registration. Each user not only has intrinsic tastes, but also keeps changing her personal interests during lifetime. Hence, it is challenging to handle such lifelong sequential modeling for each individual user. Existing methodologies for sequential modeling are only capable of dealing with relatively recent user behaviors, which leaves huge space for modeling long-term especially lifelong sequential patterns to facilitate user modeling. Moreover, one user's behavior may be accounted for various previous behaviors within her whole online activity history, i.e., long-term dependency with multi-scale sequential patterns. In order to tackle these challenges, in this paper, we propose a Hierarchical Periodic Memory Network for lifelong sequential modeling with personalized memorization of sequential patterns for each user. The model also adopts a hierarchical and periodical updating mechanism to capture multi-scale sequential patterns of user interests while supporting the evolving user behavior logs. The experimental results over three large-scale real-world datasets have demonstrated the advantages of our proposed model with significant improvement in user response prediction performance against the state-of-the-arts.Comment: SIGIR 2019. Reproducible codes and datasets: https://github.com/alimamarankgroup/HPM

    ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation

    Full text link
    With large language models (LLMs) achieving remarkable breakthroughs in natural language processing (NLP) domains, LLM-enhanced recommender systems have received much attention and have been actively explored currently. In this paper, we focus on adapting and empowering a pure large language model for zero-shot and few-shot recommendation tasks. First and foremost, we identify and formulate the lifelong sequential behavior incomprehension problem for LLMs in recommendation domains, i.e., LLMs fail to extract useful information from a textual context of long user behavior sequence, even if the length of context is far from reaching the context limitation of LLMs. To address such an issue and improve the recommendation performance of LLMs, we propose a novel framework, namely Retrieval-enhanced Large Language models (ReLLa) for recommendation tasks in both zero-shot and few-shot settings. For zero-shot recommendation, we perform semantic user behavior retrieval (SUBR) to improve the data quality of testing samples, which greatly reduces the difficulty for LLMs to extract the essential knowledge from user behavior sequences. As for few-shot recommendation, we further design retrieval-enhanced instruction tuning (ReiT) by adopting SUBR as a data augmentation technique for training samples. Specifically, we develop a mixed training dataset consisting of both the original data samples and their retrieval-enhanced counterparts. We conduct extensive experiments on a real-world public dataset (i.e., MovieLens-1M) to demonstrate the superiority of ReLLa compared with existing baseline models, as well as its capability for lifelong sequential behavior comprehension.Comment: Under Revie

    TWIN: TWo-stage Interest Network for Lifelong User Behavior Modeling in CTR Prediction at Kuaishou

    Full text link
    Life-long user behavior modeling, i.e., extracting a user's hidden interests from rich historical behaviors in months or even years, plays a central role in modern CTR prediction systems. Conventional algorithms mostly follow two cascading stages: a simple General Search Unit (GSU) for fast and coarse search over tens of thousands of long-term behaviors and an Exact Search Unit (ESU) for effective Target Attention (TA) over the small number of finalists from GSU. Although efficient, existing algorithms mostly suffer from a crucial limitation: the \textit{inconsistent} target-behavior relevance metrics between GSU and ESU. As a result, their GSU usually misses highly relevant behaviors but retrieves ones considered irrelevant by ESU. In such case, the TA in ESU, no matter how attention is allocated, mostly deviates from the real user interests and thus degrades the overall CTR prediction accuracy. To address such inconsistency, we propose \textbf{TWo-stage Interest Network (TWIN)}, where our Consistency-Preserved GSU (CP-GSU) adopts the identical target-behavior relevance metric as the TA in ESU, making the two stages twins. Specifically, to break TA's computational bottleneck and extend it from ESU to GSU, or namely from behavior length 10210^2 to length 10410510^4-10^5, we build a novel attention mechanism by behavior feature splitting. For the video inherent features of a behavior, we calculate their linear projection by efficient pre-computing \& caching strategies. And for the user-item cross features, we compress each into a one-dimentional bias term in the attention score calculation to save the computational cost. The consistency between two stages, together with the effective TA-based relevance metric in CP-GSU, contributes to significant performance gain in CTR prediction.Comment: Accepted by KDD 202

    AutoAttention: Automatic Field Pair Selection for Attention in User Behavior Modeling

    Full text link
    In Click-through rate (CTR) prediction models, a user's interest is usually represented as a fixed-length vector based on her history behaviors. Recently, several methods are proposed to learn an attentive weight for each user behavior and conduct weighted sum pooling. However, these methods only manually select several fields from the target item side as the query to interact with the behaviors, neglecting the other target item fields, as well as user and context fields. Directly including all these fields in the attention may introduce noise and deteriorate the performance. In this paper, we propose a novel model named AutoAttention, which includes all item/user/context side fields as the query, and assigns a learnable weight for each field pair between behavior fields and query fields. Pruning on these field pairs via these learnable weights lead to automatic field pair selection, so as to identify and remove noisy field pairs. Though including more fields, the computation cost of AutoAttention is still low due to using a simple attention function and field pair selection. Extensive experiments on the public dataset and Tencent's production dataset demonstrate the effectiveness of the proposed approach.Comment: Accepted by ICDM 202

    User Multi-Interest Modeling for Behavioral Cognition

    Full text link
    Representation modeling based on user behavior sequences is an important direction in user cognition. In this study, we propose a novel framework called Multi-Interest User Representation Model. Specifically, the model consists of two sub-models. The first sub-module is used to encode user behaviors in any period into a super-high dimensional sparse vector. Then, we design a self-supervised network to map vectors in the first module to low-dimensional dense user representations by contrastive learning. With the help of a novel attention module which can learn multi-interests of user, the second sub-module achieves almost lossless dimensionality reduction. Experiments on several benchmark datasets show that our approach works well and outperforms state-of-the-art unsupervised representation methods in different downstream tasks.Comment: during peer revie

    TBIN: Modeling Long Textual Behavior Data for CTR Prediction

    Full text link
    Click-through rate (CTR) prediction plays a pivotal role in the success of recommendations. Inspired by the recent thriving of language models (LMs), a surge of works improve prediction by organizing user behavior data in a \textbf{textual} format and using LMs to understand user interest at a semantic level. While promising, these works have to truncate the textual data to reduce the quadratic computational overhead of self-attention in LMs. However, it has been studied that long user behavior data can significantly benefit CTR prediction. In addition, these works typically condense user diverse interests into a single feature vector, which hinders the expressive capability of the model. In this paper, we propose a \textbf{T}extual \textbf{B}ehavior-based \textbf{I}nterest Chunking \textbf{N}etwork (TBIN), which tackles the above limitations by combining an efficient locality-sensitive hashing algorithm and a shifted chunk-based self-attention. The resulting user diverse interests are dynamically activated, producing user interest representation towards the target item. Finally, the results of both offline and online experiments on real-world food recommendation platform demonstrate the effectiveness of TBIN

    Temporal Interest Network for Click-Through Rate Prediction

    Full text link
    The history of user behaviors constitutes one of the most significant characteristics in predicting the click-through rate (CTR), owing to their strong semantic and temporal correlation with the target item. While the literature has individually examined each of these correlations, research has yet to analyze them in combination, that is, the quadruple correlation of (behavior semantics, target semantics, behavior temporal, and target temporal). The effect of this correlation on performance and the extent to which existing methods learn it remain unknown. To address this gap, we empirically measure the quadruple correlation and observe intuitive yet robust quadruple patterns. We measure the learned correlation of several representative user behavior methods, but to our surprise, none of them learn such a pattern, especially the temporal one. In this paper, we propose the Temporal Interest Network (TIN) to capture the quadruple semantic and temporal correlation between behaviors and the target. We achieve this by incorporating target-aware temporal encoding, in addition to semantic embedding, to represent behaviors and the target. Furthermore, we deploy target-aware attention, along with target-aware representation, to explicitly conduct the 4-way interaction. We performed comprehensive evaluations on the Amazon and Alibaba datasets. Our proposed TIN outperforms the best-performing baselines by 0.43\% and 0.29\% on two datasets, respectively. Comprehensive analysis and visualization show that TIN is indeed capable of learning the quadruple correlation effectively, while all existing methods fail to do so. We provide our implementation of TIN in Tensorflow

    Modeling Occasion Evolution in Frequency Domain for Promotion-Aware Click-Through Rate Prediction

    Full text link
    Promotions are becoming more important and prevalent in e-commerce to attract customers and boost sales, leading to frequent changes of occasions, which drives users to behave differently. In such situations, most existing Click-Through Rate (CTR) models can't generalize well to online serving due to distribution uncertainty of the upcoming occasion. In this paper, we propose a novel CTR model named MOEF for recommendations under frequent changes of occasions. Firstly, we design a time series that consists of occasion signals generated from the online business scenario. Since occasion signals are more discriminative in the frequency domain, we apply Fourier Transformation to sliding time windows upon the time series, obtaining a sequence of frequency spectrum which is then processed by Occasion Evolution Layer (OEL). In this way, a high-order occasion representation can be learned to handle the online distribution uncertainty. Moreover, we adopt multiple experts to learn feature representations from multiple aspects, which are guided by the occasion representation via an attention mechanism. Accordingly, a mixture of feature representations is obtained adaptively for different occasions to predict the final CTR. Experimental results on real-world datasets validate the superiority of MOEF and online A/B tests also show MOEF outperforms representative CTR models significantly

    ATBRG: Adaptive Target-Behavior Relational Graph Network for Effective Recommendation

    Full text link
    Recommender system (RS) devotes to predicting user preference to a given item and has been widely deployed in most web-scale applications. Recently, knowledge graph (KG) attracts much attention in RS due to its abundant connective information. Existing methods either explore independent meta-paths for user-item pairs over KG, or employ graph neural network (GNN) on whole KG to produce representations for users and items separately. Despite effectiveness, the former type of methods fails to fully capture structural information implied in KG, while the latter ignores the mutual effect between target user and item during the embedding propagation. In this work, we propose a new framework named Adaptive Target-Behavior Relational Graph network (ATBRG for short) to effectively capture structural relations of target user-item pairs over KG. Specifically, to associate the given target item with user behaviors over KG, we propose the graph connect and graph prune techniques to construct adaptive target-behavior relational graph. To fully distill structural information from the sub-graph connected by rich relations in an end-to-end fashion, we elaborate on the model design of ATBRG, equipped with relation-aware extractor layer and representation activation layer. We perform extensive experiments on both industrial and benchmark datasets. Empirical results show that ATBRG consistently and significantly outperforms state-of-the-art methods. Moreover, ATBRG has also achieved a performance improvement of 5.1% on CTR metric after successful deployment in one popular recommendation scenario of Taobao APP.Comment: Accepted by SIGIR 2020, full paper with 10 pages and 5 figure
    corecore