325,581 research outputs found
POPE: Partial Order Preserving Encoding
Recently there has been much interest in performing search queries over
encrypted data to enable functionality while protecting sensitive data. One
particularly efficient mechanism for executing such queries is order-preserving
encryption/encoding (OPE) which results in ciphertexts that preserve the
relative order of the underlying plaintexts thus allowing range and comparison
queries to be performed directly on ciphertexts. In this paper, we propose an
alternative approach to range queries over encrypted data that is optimized to
support insert-heavy workloads as are common in "big data" applications while
still maintaining search functionality and achieving stronger security.
Specifically, we propose a new primitive called partial order preserving
encoding (POPE) that achieves ideal OPE security with frequency hiding and also
leaves a sizable fraction of the data pairwise incomparable. Using only O(1)
persistent and non-persistent client storage for
, our POPE scheme provides extremely fast batch insertion
consisting of a single round, and efficient search with O(1) amortized cost for
up to search queries. This improved security and
performance makes our scheme better suited for today's insert-heavy databases.Comment: Appears in ACM CCS 2016 Proceeding
What Users Ask a Search Engine: Analyzing One Billion Russian Question Queries
We analyze the question queries submitted to a large commercial web search engine to get insights about what people ask, and to better tailor the search results to the users’ needs. Based on a dataset of about one billion question queries submitted during the year 2012, we investigate askers’ querying behavior with the support of automatic query categorization. While the importance of question queries is likely to increase, at present they only make up 3–4% of the total search traffic. Since questions are such a small part of the query stream and are more likely to be unique than shorter queries, clickthrough information is typically rather sparse. Thus, query categorization methods based on the categories of clicked web documents do not work well for questions. As an alternative, we propose a robust question query classification method that uses the labeled questions from a large community question answering platform (CQA) as a training set. The resulting classifier is then transferred to the web search questions. Even though questions on CQA platforms tend to be different to web search questions, our categorization method proves competitive with strong baselines with respect to classification accuracy. To show the scalability of our proposed method we apply the classifiers to about one billion question queries and discuss the trade-offs between performance and accuracy that different classification models offer. Our findings reveal what people ask a search engine and also how this contrasts behavior on a CQA platform
GraphSE: An Encrypted Graph Database for Privacy-Preserving Social Search
In this paper, we propose GraphSE, an encrypted graph database for online
social network services to address massive data breaches. GraphSE preserves
the functionality of social search, a key enabler for quality social network
services, where social search queries are conducted on a large-scale social
graph and meanwhile perform set and computational operations on user-generated
contents. To enable efficient privacy-preserving social search, GraphSE
provides an encrypted structural data model to facilitate parallel and
encrypted graph data access. It is also designed to decompose complex social
search queries into atomic operations and realise them via interchangeable
protocols in a fast and scalable manner. We build GraphSE with various
queries supported in the Facebook graph search engine and implement a
full-fledged prototype. Extensive evaluations on Azure Cloud demonstrate that
GraphSE is practical for querying a social graph with a million of users.Comment: This is the full version of our AsiaCCS paper "GraphSE: An
Encrypted Graph Database for Privacy-Preserving Social Search". It includes
the security proof of the proposed scheme. If you want to cite our work,
please cite the conference version of i
- …
