12 research outputs found

    Robust quantum spatial search

    Full text link
    Quantum spatial search has been widely studied with most of the study focusing on quantum walk algorithms. We show that quantum walk algorithms are extremely sensitive to systematic errors. We present a recursive algorithm which offers significant robustness to certain systematic errors. To search N items, our recursive algorithm can tolerate errors of size O(1/\sqrt{\ln N}) which is exponentially better than quantum walk algorithms for which tolerable error size is only O(\ln N/\sqrt{N}). Also, our algorithm does not need any ancilla qubit. Thus our algorithm is much easier to implement experimentally compared to quantum walk algorithms

    Quantum walks on two-dimensional grids with multiple marked locations

    Full text link
    The running time of a quantum walk search algorithm depends on both the structure of the search space (graph) and the configuration of marked locations. While the first dependence have been studied in a number of papers, the second dependence remains mostly unstudied. We study search by quantum walks on two-dimensional grid using the algorithm of Ambainis, Kempe and Rivosh [AKR05]. The original paper analyses one and two marked location cases only. We move beyond two marked locations and study the behaviour of the algorithm for an arbitrary configuration of marked locations. In this paper we prove two results showing the importance of how the marked locations are arranged. First, we present two placements of kk marked locations for which the number of steps of the algorithm differs by Ω(k)\Omega(\sqrt{k}) factor. Second, we present two configurations of kk and k\sqrt{k} marked locations having the same number of steps and probability to find a marked location

    On Applying the Lackadaisical Quantum Walk Algorithm to Search for Multiple Solutions on Grids

    Full text link
    Quantum computing holds the promise of improving the information processing power to levels unreachable by classical computation. Quantum walks are heading the development of quantum algorithms for searching information on graphs more efficiently than their classical counterparts. A quantum-walk-based algorithm that is standing out in the literature is the lackadaisical quantum walk. The lackadaisical quantum walk is an algorithm developed to search two-dimensional grids whose vertices have a self-loop of weight ll. In this paper, we address several issues related to the application of the lackadaisical quantum walk to successfully search for multiple solutions on grids. Firstly, we show that only one of the two stopping conditions found in the literature is suitable for simulations. We also demonstrate that the final success probability depends on the space density of solutions and the relative distance between solutions. Furthermore, this work generalizes the lackadaisical quantum walk to search for multiple solutions on grids of arbitrary dimensions. In addition, we propose an optimal adjustment of the self-loop weight ll for such scenarios of arbitrary dimensions. It turns out the other fits of ll found in the literature are particular cases. Finally, we observe a two-to-one relation between the steps of the lackadaisical quantum walk and the ones of Grover's algorithm, which requires modifications in the stopping condition. In conclusion, this work deals with practical issues one should consider when applying the lackadaisical quantum walk, besides expanding the technique to a wider range of search problems.Comment: Extended version of the conference paper available at https://doi.org/10.1007/978-3-030-61377-8_9 . 21 pages, 6 figure
    corecore