25,923 research outputs found

    Deep Learning for Sequential Recommendation: Algorithms, Influential Factors, and Evaluations

    Full text link
    In the field of sequential recommendation, deep learning (DL)-based methods have received a lot of attention in the past few years and surpassed traditional models such as Markov chain-based and factorization-based ones. However, there is little systematic study on DL-based methods, especially regarding to how to design an effective DL model for sequential recommendation. In this view, this survey focuses on DL-based sequential recommender systems by taking the aforementioned issues into consideration. Specifically,we illustrate the concept of sequential recommendation, propose a categorization of existing algorithms in terms of three types of behavioral sequence, summarize the key factors affecting the performance of DL-based models, and conduct corresponding evaluations to demonstrate the effects of these factors. We conclude this survey by systematically outlining future directions and challenges in this field.Comment: 36 pages, 17 figures, 6 tables, 104 reference

    Compare Contact Model-based Control and Contact Model-free Learning: A Survey of Robotic Peg-in-hole Assembly Strategies

    Full text link
    In this paper, we present an overview of robotic peg-in-hole assembly and analyze two main strategies: contact model-based and contact model-free strategies. More specifically, we first introduce the contact model control approaches, including contact state recognition and compliant control two steps. Additionally, we focus on a comprehensive analysis of the whole robotic assembly system. Second, without the contact state recognition process, we decompose the contact model-free learning algorithms into two main subfields: learning from demonstrations and learning from environments (mainly based on reinforcement learning). For each subfield, we survey the landmark studies and ongoing research to compare the different categories. We hope to strengthen the relation between these two research communities by revealing the underlying links. Ultimately, the remaining challenges and open questions in the field of robotic peg-in-hole assembly community is discussed. The promising directions and potential future work are also considered

    'Say EM' for Selecting Probabilistic Models for Logical Sequences

    Full text link
    Many real world sequences such as protein secondary structures or shell logs exhibit a rich internal structures. Traditional probabilistic models of sequences, however, consider sequences of flat symbols only. Logical hidden Markov models have been proposed as one solution. They deal with logical sequences, i.e., sequences over an alphabet of logical atoms. This comes at the expense of a more complex model selection problem. Indeed, different abstraction levels have to be explored. In this paper, we propose a novel method for selecting logical hidden Markov models from data called SAGEM. SAGEM combines generalized expectation maximization, which optimizes parameters, with structure search for model selection using inductive logic programming refinement operators. We provide convergence and experimental results that show SAGEM's effectiveness.Comment: Appears in Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence (UAI2005

    Noisy Parallel Approximate Decoding for Conditional Recurrent Language Model

    Full text link
    Recent advances in conditional recurrent language modelling have mainly focused on network architectures (e.g., attention mechanism), learning algorithms (e.g., scheduled sampling and sequence-level training) and novel applications (e.g., image/video description generation, speech recognition, etc.) On the other hand, we notice that decoding algorithms/strategies have not been investigated as much, and it has become standard to use greedy or beam search. In this paper, we propose a novel decoding strategy motivated by an earlier observation that nonlinear hidden layers of a deep neural network stretch the data manifold. The proposed strategy is embarrassingly parallelizable without any communication overhead, while improving an existing decoding algorithm. We extensively evaluate it with attention-based neural machine translation on the task of En->Cz translation

    On Multi-resident Activity Recognition in Ambient Smart-Homes

    Full text link
    Increasing attention to the research on activity monitoring in smart homes has motivated the employment of ambient intelligence to reduce the deployment cost and solve the privacy issue. Several approaches have been proposed for multi-resident activity recognition, however, there still lacks a comprehensive benchmark for future research and practical selection of models. In this paper we study different methods for multi-resident activity recognition and evaluate them on same sets of data. The experimental results show that recurrent neural network with gated recurrent units is better than other models and also considerably efficient, and that using combined activities as single labels is more effective than represent them as separate labels

    Cross-Entropic Learning of a Machine for the Decision in a Partially Observable Universe

    Full text link
    Revision of the paper previously entitled "Learning a Machine for the Decision in a Partially Observable Markov Universe" In this paper, we are interested in optimal decisions in a partially observable universe. Our approach is to directly approximate an optimal strategic tree depending on the observation. This approximation is made by means of a parameterized probabilistic law. A particular family of hidden Markov models, with input \emph{and} output, is considered as a model of policy. A method for optimizing the parameters of these HMMs is proposed and applied. This optimization is based on the cross-entropic principle for rare events simulation developed by Rubinstein.Comment: Submitted to EJO

    Variational Inference for Data-Efficient Model Learning in POMDPs

    Full text link
    Partially observable Markov decision processes (POMDPs) are a powerful abstraction for tasks that require decision making under uncertainty, and capture a wide range of real world tasks. Today, effective planning approaches exist that generate effective strategies given black-box models of a POMDP task. Yet, an open question is how to acquire accurate models for complex domains. In this paper we propose DELIP, an approach to model learning for POMDPs that utilizes amortized structured variational inference. We empirically show that our model leads to effective control strategies when coupled with state-of-the-art planners. Intuitively, model-based approaches should be particularly beneficial in environments with changing reward structures, or where rewards are initially unknown. Our experiments confirm that DELIP is particularly effective in this setting

    Protein secondary structure prediction using deep convolutional neural fields

    Full text link
    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility

    Leveraging exploration in off-policy algorithms via normalizing flows

    Full text link
    The ability to discover approximately optimal policies in domains with sparse rewards is crucial to applying reinforcement learning (RL) in many real-world scenarios. Approaches such as neural density models and continuous exploration (e.g., Go-Explore) have been proposed to maintain the high exploration rate necessary to find high performing and generalizable policies. Soft actor-critic(SAC) is another method for improving exploration that aims to combine efficient learning via off-policy updates while maximizing the policy entropy. In this work, we extend SAC to a richer class of probability distributions (e.g., multimodal) through normalizing flows (NF) and show that this significantly improves performance by accelerating the discovery of good policies while using much smaller policy representations. Our approach, which we call SAC-NF, is a simple, efficient,easy-to-implement modification and improvement to SAC on continuous control baselines such as MuJoCo and PyBullet Roboschool domains. Finally, SAC-NF does this while being significantly parameter efficient, using as few as 5.5% the parameters for an equivalent SAC model.Comment: Accepted to 3rd Conference on Robot Learning (CoRL 2019); Keywords: Exploration, soft actor-critic, normalizing flow, off-policy; maximum entropy, reinforcement learning; deceptive reward; sparse reward; inverse autoregressive flo

    Using multi-categorization semantic analysis and personalization for semantic search

    Full text link
    Semantic search technology has received more attention in the last years. Compared with the keyword based search, semantic search is used to excavate the latent semantics information and help users find the information items that they want indeed. In this paper, we present a novel approach for semantic search which combines Multi-Categorization Semantic Analysis with personalization technology. The MCSA approach can classify documents into multiple categories, which is distinct from the existing approaches of classifying documents into a single category. Then, the search history and personal information for users are significantly considered in analysing and matching the original search result by Term Vector DataBase. A series of personalization algorithms are proposed to match personal information and search history. At last, the related experiments are made to validate the effectiveness and efficiency of our method. The experimental results show that our method based on MCSA and personalization outperforms some existing methods with the higher search accuracy and the lower extra time cost.Comment: 15 page
    • …
    corecore