708,533 research outputs found
Why People Search for Images using Web Search Engines
What are the intents or goals behind human interactions with image search
engines? Knowing why people search for images is of major concern to Web image
search engines because user satisfaction may vary as intent varies. Previous
analyses of image search behavior have mostly been query-based, focusing on
what images people search for, rather than intent-based, that is, why people
search for images. To date, there is no thorough investigation of how different
image search intents affect users' search behavior.
In this paper, we address the following questions: (1)Why do people search
for images in text-based Web image search systems? (2)How does image search
behavior change with user intent? (3)Can we predict user intent effectively
from interactions during the early stages of a search session? To this end, we
conduct both a lab-based user study and a commercial search log analysis.
We show that user intents in image search can be grouped into three classes:
Explore/Learn, Entertain, and Locate/Acquire. Our lab-based user study reveals
different user behavior patterns under these three intents, such as first click
time, query reformulation, dwell time and mouse movement on the result page.
Based on user interaction features during the early stages of an image search
session, that is, before mouse scroll, we develop an intent classifier that is
able to achieve promising results for classifying intents into our three intent
classes. Given that all features can be obtained online and unobtrusively, the
predicted intents can provide guidance for choosing ranking methods immediately
after scrolling
Adapting to the Shifting Intent of Search Queries
Search engines today present results that are often oblivious to abrupt
shifts in intent. For example, the query `independence day' usually refers to a
US holiday, but the intent of this query abruptly changed during the release of
a major film by that name. While no studies exactly quantify the magnitude of
intent-shifting traffic, studies suggest that news events, seasonal topics, pop
culture, etc account for 50% of all search queries. This paper shows that the
signals a search engine receives can be used to both determine that a shift in
intent has happened, as well as find a result that is now more relevant. We
present a meta-algorithm that marries a classifier with a bandit algorithm to
achieve regret that depends logarithmically on the number of query impressions,
under certain assumptions. We provide strong evidence that this regret is close
to the best achievable. Finally, via a series of experiments, we demonstrate
that our algorithm outperforms prior approaches, particularly as the amount of
intent-shifting traffic increases.Comment: This is the full version of the paper in NIPS'0
The Influence of Commercial Intent of Search Results on Their Perceived Relevance
We carried out a retrieval effectiveness test on the three major web search engines (i.e., Google, Microsoft and Yahoo). In addition to relevance judgments, we classified the results according to their commercial intent and whether or not they carried any advertising. We found that all search engines provide a large number of results with a commercial intent. Google provides significantly more commercial results than the other search engines do. However, the commercial intent of a result did not influence jurors in their relevance judgments
User Intent Prediction in Information-seeking Conversations
Conversational assistants are being progressively adopted by the general
population. However, they are not capable of handling complicated
information-seeking tasks that involve multiple turns of information exchange.
Due to the limited communication bandwidth in conversational search, it is
important for conversational assistants to accurately detect and predict user
intent in information-seeking conversations. In this paper, we investigate two
aspects of user intent prediction in an information-seeking setting. First, we
extract features based on the content, structural, and sentiment
characteristics of a given utterance, and use classic machine learning methods
to perform user intent prediction. We then conduct an in-depth feature
importance analysis to identify key features in this prediction task. We find
that structural features contribute most to the prediction performance. Given
this finding, we construct neural classifiers to incorporate context
information and achieve better performance without feature engineering. Our
findings can provide insights into the important factors and effective methods
of user intent prediction in information-seeking conversations.Comment: Accepted to CHIIR 201
The Nutrition Elite: Do Only the Highest Levels of Caloric Knowledge, Obesity Knowledge, and Motivation Matter in Processing Nutrition Ad Claims and Disclosures?
This study examines the role of the highest levels of caloric knowledge, obesity consequences knowledge, and motivation to search for nutrition information in the processing of relative nutrient content claims in advertisements, such as “half the calories” or “half the fat,” for products relatively high in total calorie levels. After controlling for the impact of demographics, dietary habits, body mass index, relative ad claims and disclosures, perceived weight gain risk, and other variables, the authors find curvilinear (quadratic) effects for caloric knowledge, obesity consequences knowledge, and motivation to search for nutrition information on intent to buy an advertised, high-calorie snack bar. This suggests a strengthening of the negative relationship for intent for consumers at the highest levels of caloric knowledge, obesity consequences knowledge, and motivation (i.e., the “nutrition elite”). The authors offer public policy implications, including whether achieving such exceedingly high levels of nutrition knowledge and motivation is realistic for the general public in light of other policy alternatives, such as market-based solutions (e.g., reducing serving sizes, standardized front-of-package icons)
LiveSketch: Query Perturbations for Guided Sketch-based Visual Search
LiveSketch is a novel algorithm for searching large image collections using
hand-sketched queries. LiveSketch tackles the inherent ambiguity of sketch
search by creating visual suggestions that augment the query as it is drawn,
making query specification an iterative rather than one-shot process that helps
disambiguate users' search intent. Our technical contributions are: a triplet
convnet architecture that incorporates an RNN based variational autoencoder to
search for images using vector (stroke-based) queries; real-time clustering to
identify likely search intents (and so, targets within the search embedding);
and the use of backpropagation from those targets to perturb the input stroke
sequence, so suggesting alterations to the query in order to guide the search.
We show improvements in accuracy and time-to-task over contemporary baselines
using a 67M image corpus.Comment: Accepted to CVPR 201
- …
