708,533 research outputs found

    Why People Search for Images using Web Search Engines

    Get PDF
    What are the intents or goals behind human interactions with image search engines? Knowing why people search for images is of major concern to Web image search engines because user satisfaction may vary as intent varies. Previous analyses of image search behavior have mostly been query-based, focusing on what images people search for, rather than intent-based, that is, why people search for images. To date, there is no thorough investigation of how different image search intents affect users' search behavior. In this paper, we address the following questions: (1)Why do people search for images in text-based Web image search systems? (2)How does image search behavior change with user intent? (3)Can we predict user intent effectively from interactions during the early stages of a search session? To this end, we conduct both a lab-based user study and a commercial search log analysis. We show that user intents in image search can be grouped into three classes: Explore/Learn, Entertain, and Locate/Acquire. Our lab-based user study reveals different user behavior patterns under these three intents, such as first click time, query reformulation, dwell time and mouse movement on the result page. Based on user interaction features during the early stages of an image search session, that is, before mouse scroll, we develop an intent classifier that is able to achieve promising results for classifying intents into our three intent classes. Given that all features can be obtained online and unobtrusively, the predicted intents can provide guidance for choosing ranking methods immediately after scrolling

    Adapting to the Shifting Intent of Search Queries

    Full text link
    Search engines today present results that are often oblivious to abrupt shifts in intent. For example, the query `independence day' usually refers to a US holiday, but the intent of this query abruptly changed during the release of a major film by that name. While no studies exactly quantify the magnitude of intent-shifting traffic, studies suggest that news events, seasonal topics, pop culture, etc account for 50% of all search queries. This paper shows that the signals a search engine receives can be used to both determine that a shift in intent has happened, as well as find a result that is now more relevant. We present a meta-algorithm that marries a classifier with a bandit algorithm to achieve regret that depends logarithmically on the number of query impressions, under certain assumptions. We provide strong evidence that this regret is close to the best achievable. Finally, via a series of experiments, we demonstrate that our algorithm outperforms prior approaches, particularly as the amount of intent-shifting traffic increases.Comment: This is the full version of the paper in NIPS'0

    The Influence of Commercial Intent of Search Results on Their Perceived Relevance

    Get PDF
    We carried out a retrieval effectiveness test on the three major web search engines (i.e., Google, Microsoft and Yahoo). In addition to relevance judgments, we classified the results according to their commercial intent and whether or not they carried any advertising. We found that all search engines provide a large number of results with a commercial intent. Google provides significantly more commercial results than the other search engines do. However, the commercial intent of a result did not influence jurors in their relevance judgments

    User Intent Prediction in Information-seeking Conversations

    Full text link
    Conversational assistants are being progressively adopted by the general population. However, they are not capable of handling complicated information-seeking tasks that involve multiple turns of information exchange. Due to the limited communication bandwidth in conversational search, it is important for conversational assistants to accurately detect and predict user intent in information-seeking conversations. In this paper, we investigate two aspects of user intent prediction in an information-seeking setting. First, we extract features based on the content, structural, and sentiment characteristics of a given utterance, and use classic machine learning methods to perform user intent prediction. We then conduct an in-depth feature importance analysis to identify key features in this prediction task. We find that structural features contribute most to the prediction performance. Given this finding, we construct neural classifiers to incorporate context information and achieve better performance without feature engineering. Our findings can provide insights into the important factors and effective methods of user intent prediction in information-seeking conversations.Comment: Accepted to CHIIR 201

    The Nutrition Elite: Do Only the Highest Levels of Caloric Knowledge, Obesity Knowledge, and Motivation Matter in Processing Nutrition Ad Claims and Disclosures?

    Get PDF
    This study examines the role of the highest levels of caloric knowledge, obesity consequences knowledge, and motivation to search for nutrition information in the processing of relative nutrient content claims in advertisements, such as “half the calories” or “half the fat,” for products relatively high in total calorie levels. After controlling for the impact of demographics, dietary habits, body mass index, relative ad claims and disclosures, perceived weight gain risk, and other variables, the authors find curvilinear (quadratic) effects for caloric knowledge, obesity consequences knowledge, and motivation to search for nutrition information on intent to buy an advertised, high-calorie snack bar. This suggests a strengthening of the negative relationship for intent for consumers at the highest levels of caloric knowledge, obesity consequences knowledge, and motivation (i.e., the “nutrition elite”). The authors offer public policy implications, including whether achieving such exceedingly high levels of nutrition knowledge and motivation is realistic for the general public in light of other policy alternatives, such as market-based solutions (e.g., reducing serving sizes, standardized front-of-package icons)

    LiveSketch: Query Perturbations for Guided Sketch-based Visual Search

    Get PDF
    LiveSketch is a novel algorithm for searching large image collections using hand-sketched queries. LiveSketch tackles the inherent ambiguity of sketch search by creating visual suggestions that augment the query as it is drawn, making query specification an iterative rather than one-shot process that helps disambiguate users' search intent. Our technical contributions are: a triplet convnet architecture that incorporates an RNN based variational autoencoder to search for images using vector (stroke-based) queries; real-time clustering to identify likely search intents (and so, targets within the search embedding); and the use of backpropagation from those targets to perturb the input stroke sequence, so suggesting alterations to the query in order to guide the search. We show improvements in accuracy and time-to-task over contemporary baselines using a 67M image corpus.Comment: Accepted to CVPR 201
    corecore