135 research outputs found

    Smart environment monitoring through micro unmanned aerial vehicles

    Get PDF
    In recent years, the improvements of small-scale Unmanned Aerial Vehicles (UAVs) in terms of flight time, automatic control, and remote transmission are promoting the development of a wide range of practical applications. In aerial video surveillance, the monitoring of broad areas still has many challenges due to the achievement of different tasks in real-time, including mosaicking, change detection, and object detection. In this thesis work, a small-scale UAV based vision system to maintain regular surveillance over target areas is proposed. The system works in two modes. The first mode allows to monitor an area of interest by performing several flights. During the first flight, it creates an incremental geo-referenced mosaic of an area of interest and classifies all the known elements (e.g., persons) found on the ground by an improved Faster R-CNN architecture previously trained. In subsequent reconnaissance flights, the system searches for any changes (e.g., disappearance of persons) that may occur in the mosaic by a histogram equalization and RGB-Local Binary Pattern (RGB-LBP) based algorithm. If present, the mosaic is updated. The second mode, allows to perform a real-time classification by using, again, our improved Faster R-CNN model, useful for time-critical operations. Thanks to different design features, the system works in real-time and performs mosaicking and change detection tasks at low-altitude, thus allowing the classification even of small objects. The proposed system was tested by using the whole set of challenging video sequences contained in the UAV Mosaicking and Change Detection (UMCD) dataset and other public datasets. The evaluation of the system by well-known performance metrics has shown remarkable results in terms of mosaic creation and updating, as well as in terms of change detection and object detection

    Development Of A High Performance Mosaicing And Super-Resolution Algorithm

    Get PDF
    In this dissertation, a high-performance mosaicing and super-resolution algorithm is described. The scale invariant feature transform (SIFT)-based mosaicing algorithm builds an initial mosaic which is iteratively updated by the robust super resolution algorithm to achieve the final high-resolution mosaic. Two different types of datasets are used for testing: high altitude balloon data and unmanned aerial vehicle data. To evaluate our algorithm, five performance metrics are employed: mean square error, peak signal to noise ratio, singular value decomposition, slope of reciprocal singular value curve, and cumulative probability of blur detection. Extensive testing shows that the proposed algorithm is effective in improving the captured aerial data and the performance metrics are accurate in quantifying the evaluation of the algorithm

    Novel Image Mosaicking of UAV’s Imagery using Collinearity Condition

    Get PDF
    This paper presents a preliminary result of ongoing research on unmanned aerial vehicle (UAV) for cooperative mapping to support a large-scale urban city mapping, in Malang, Indonesia. A small UAV can carry an embedded camera which can continuously take pictures of landscapes. A convenient way of monitoring landscape changes might be through accessing a sequence of images. However, since the camera’s field of view is always smaller than human eye’s field of view, the need to combine aerial pictures into a single mosaic is eminent. Through mosaics, a more complete view of the scene can be accessed and analyzed. A semi-automated generation of mosaics is investigated using a photogrammetric approach, namely a perspective projection which is based on collinearity condition. This paper reviews the general projection model based on collinearity condition and uses that to determine a common projective plane from images. The overlapped points for each RGB channel are interpolated onto that of orthographic plane to generate mosaics. An initial attempt shows a promising result

    Micro Aerial Vehicles (MAV) Assured Navigation in Search and Rescue Missions Robust Localization, Mapping and Detection

    Get PDF
    This Master's Thesis describes the developments on robust localization, mapping and detection algorithms for Micro Aerial Vehicles (MAVs). The localization method proposes a seamless indoor-outdoor multi-sensor architecture. This algorithm is capable of using all or a subset of its sensor inputs to determine a platform's position, velocity and attitude (PVA). It relies on the Inertial Measurement Unit as the core sensor and monitors the status and observability of the secondary sensors to select the most optimum estimator strategy for each situation. Furthermore, it ensures a smooth transition between filters structures. This document also describes the integration mechanism for a set of common sensors such as GNSS receivers, laser scanners and stereo and mono cameras. The mapping algorithm provides a fully automated fast aerial mapping pipeline. It speeds up the process by pre-selecting the images using the flight plan and the onboard localization. Furthermore, it relies on Structure from Motion (SfM) techniques to produce an optimized 3D reconstruction of camera locations and sparse scene geometry. These outputs are used to compute the perspective transformations that project the raw images on the ground and produce a geo-referenced map. Finally, these maps are fused with other domains in a collaborative UGV and UAV mapping algorithms. The real-time aerial detection of victims is based on a thermal camera. The algorithm is composed by three steps. Firstly, a normalization of the image is performed to get rid of the background and to extract the regions of interest. Later the victim detection and tracking steps produce the real-time geo-referenced locations of the detections. The thesis also proposes the concept of a MAV Copilot, a payload composed by a set of sensors and algorithm the enhances the capabilities of any commercial MAV. To develop and validate these contributions, a prototype of a search and rescue MAV and the Copilot has been developed. These developments have been validated in three large-scale demonstrations of search and rescue operations in the context of the European project ICARUS: a shipwreck in Lisbon (Portugal), an earthquake in Marche (Belgium), and the Fukushima nuclear disaster in the euRathlon 2015 competition in Piombino (Italy)

    An in Depth Review Paper on Numerous Image Mosaicing Approaches and Techniques

    Get PDF
    Image mosaicing is one of the most important subjects of research in computer vision at current. Image mocaicing requires the integration of direct techniques and feature based techniques. Direct techniques are found to be very useful for mosaicing large overlapping regions, small translations and rotations while feature based techniques are useful for small overlapping regions. Feature based image mosaicing is a combination of corner detection, corner matching, motion parameters estimation and image stitching.Furthermore, image mosaicing is considered the process of obtaining a wider field-of-view of a scene from a sequence of partial views, which has been an attractive research area because of its wide range of applications, including motion detection, resolution enhancement, monitoring global land usage, and medical imaging. Numerous algorithms for image mosaicing have been proposed over the last two decades.In this paper the authors present a review on different approaches for image mosaicing and the literature over the past few years in the field of image masaicing methodologies. The authors take an overview on the various methods for image mosaicing.This review paper also provides an in depth survey of the existing image mosaicing algorithms by classifying them into several groups. For each group, the fundamental concepts are first clearly explained. Finally this paper also reviews and discusses the strength and weaknesses of all the mosaicing groups

    Wheat trait prediction using UAV

    Get PDF
    Phenotyping is a major bottleneck in breeding programs or crop-related field experiments. Development of high throughput phenotyping (HTP) methodologies holds promise of mitigating this shortcoming and providing applications capable of non-destructive and rapid recording of accurate phenotypes at large scales. In this work, three field experiments consisting of 300, 24 and 16 spring wheat varieties, respectively, were planted at Vollebekk research station in field season 2021 and phenotyped with DJI Phantom 4 drone across the growing season. Two sets of images captured by an unmanned aerial vehicle (UAV) at nominal altitudes of 20 and 8 meter above ground were used to estimate plot heights and model heading status of the plots by texture properties of the images. The estimated traits are compared with manually collected ground truth measurements to see whether the traits can be accurately described. One set of images was captured from at a 75 degree angle and used for generating digital surface models (DSM). The second set of images was captured at nadir and used to investigate how texture properties of the images relate to the heading process of the plots. Digital surface models (DSM) produced by Pix4D were used to estimate a terrain model which is used to produce estimates of the heights of the wheat plots. The estimated plot heights were compared to manual plot height measurements to assess the accuracy of the estimates. The DSMs were also used to provide altitude values for three-dimensional models of the plot surfaces. A dataset of uniform images depicting surfaces of known plots at known times was created from drone images calibrated and undistorted by Pix4D. Grey level co-occurrence (GLCM) texture features were extracted from the dataset and a logistic regression model used to assess the features’ ability to discriminate heading status of the plots.M-BIA
    • …
    corecore