1,648 research outputs found

    High-Dimensional Screening Using Multiple Grouping of Variables

    Full text link
    Screening is the problem of finding a superset of the set of non-zero entries in an unknown p-dimensional vector \beta* given n noisy observations. Naturally, we want this superset to be as small as possible. We propose a novel framework for screening, which we refer to as Multiple Grouping (MuG), that groups variables, performs variable selection over the groups, and repeats this process multiple number of times to estimate a sequence of sets that contains the non-zero entries in \beta*. Screening is done by taking an intersection of all these estimated sets. The MuG framework can be used in conjunction with any group based variable selection algorithm. In the high-dimensional setting, where p >> n, we show that when MuG is used with the group Lasso estimator, screening can be consistently performed without using any tuning parameter. Our numerical simulations clearly show the merits of using the MuG framework in practice.Comment: This paper will appear in the IEEE Transactions on Signal Processing. See http://www.ima.umn.edu/~dvats/MuGScreening.html for more detail

    Screening Rules for Convex Problems

    Get PDF
    We propose a new framework for deriving screening rules for convex optimization problems. Our approach covers a large class of constrained and penalized optimization formulations, and works in two steps. First, given any approximate point, the structure of the objective function and the duality gap is used to gather information on the optimal solution. In the second step, this information is used to produce screening rules, i.e. safely identifying unimportant weight variables of the optimal solution. Our general framework leads to a large variety of useful existing as well as new screening rules for many applications. For example, we provide new screening rules for general simplex and L1L_1-constrained problems, Elastic Net, squared-loss Support Vector Machines, minimum enclosing ball, as well as structured norm regularized problems, such as group lasso

    GAP Safe screening rules for sparse multi-task and multi-class models

    Full text link
    High dimensional regression benefits from sparsity promoting regularizations. Screening rules leverage the known sparsity of the solution by ignoring some variables in the optimization, hence speeding up solvers. When the procedure is proven not to discard features wrongly the rules are said to be \emph{safe}. In this paper we derive new safe rules for generalized linear models regularized with â„“1\ell_1 and â„“1/â„“2\ell_1/\ell_2 norms. The rules are based on duality gap computations and spherical safe regions whose diameters converge to zero. This allows to discard safely more variables, in particular for low regularization parameters. The GAP Safe rule can cope with any iterative solver and we illustrate its performance on coordinate descent for multi-task Lasso, binary and multinomial logistic regression, demonstrating significant speed ups on all tested datasets with respect to previous safe rules.Comment: in Proceedings of the 29-th Conference on Neural Information Processing Systems (NIPS), 201
    • …
    corecore