4 research outputs found

    System Scoring Using Partial Prior Information

    Get PDF
    ABSTRACT We introduce smoothing of retrieval effectiveness scores, which balances results from prior incomplete query sets against limited additional complete information, in order to obtain more refined system orderings than would be possible on the new queries alone

    Evaluation via Negativa of Chinese Word Segmentation for Information Retrieval

    Get PDF

    SleepNet: Attention-Enhanced Robust Sleep Prediction using Dynamic Social Networks

    Full text link
    Sleep behavior significantly impacts health and acts as an indicator of physical and mental well-being. Monitoring and predicting sleep behavior with ubiquitous sensors may therefore assist in both sleep management and tracking of related health conditions. While sleep behavior depends on, and is reflected in the physiology of a person, it is also impacted by external factors such as digital media usage, social network contagion, and the surrounding weather. In this work, we propose SleepNet, a system that exploits social contagion in sleep behavior through graph networks and integrates it with physiological and phone data extracted from ubiquitous mobile and wearable devices for predicting next-day sleep labels about sleep duration. Our architecture overcomes the limitations of large-scale graphs containing connections irrelevant to sleep behavior by devising an attention mechanism. The extensive experimental evaluation highlights the improvement provided by incorporating social networks in the model. Additionally, we conduct robustness analysis to demonstrate the system's performance in real-life conditions. The outcomes affirm the stability of SleepNet against perturbations in input data. Further analyses emphasize the significance of network topology in prediction performance revealing that users with higher eigenvalue centrality are more vulnerable to data perturbations.Comment: Accepted for publication in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), 8 (March 2024

    Towards Meaningful Statements in IR Evaluation. Mapping Evaluation Measures to Interval Scales

    Full text link
    Recently, it was shown that most popular IR measures are not interval-scaled, implying that decades of experimental IR research used potentially improper methods, which may have produced questionable results. However, it was unclear if and to what extent these findings apply to actual evaluations and this opened a debate in the community with researchers standing on opposite positions about whether this should be considered an issue (or not) and to what extent. In this paper, we first give an introduction to the representational measurement theory explaining why certain operations and significance tests are permissible only with scales of a certain level. For that, we introduce the notion of meaningfulness specifying the conditions under which the truth (or falsity) of a statement is invariant under permissible transformations of a scale. Furthermore, we show how the recall base and the length of the run may make comparison and aggregation across topics problematic. Then we propose a straightforward and powerful approach for turning an evaluation measure into an interval scale, and describe an experimental evaluation of the differences between using the original measures and the interval-scaled ones. For all the regarded measures - namely Precision, Recall, Average Precision, (Normalized) Discounted Cumulative Gain, Rank-Biased Precision and Reciprocal Rank - we observe substantial effects, both on the order of average values and on the outcome of significance tests. For the latter, previously significant differences turn out to be insignificant, while insignificant ones become significant. The effect varies remarkably between the tests considered but overall, on average, we observed a 25% change in the decision about which systems are significantly different and which are not
    corecore