776 research outputs found
Small business innovation research. Abstracts of completed 1987 phase 1 projects
Non-proprietary summaries of Phase 1 Small Business Innovation Research (SBIR) projects supported by NASA in the 1987 program year are given. Work in the areas of aeronautical propulsion, aerodynamics, acoustics, aircraft systems, materials and structures, teleoperators and robotics, computer sciences, information systems, spacecraft systems, spacecraft power supplies, spacecraft propulsion, bioastronautics, satellite communication, and space processing are covered
Implication of FORCEnet on coalition forces
The coalition navies of Australia, Canada, New Zealand, United Kingdom and the United States (AUSCANNZUKUS) are in a period of transformation. They are stepping out of the Industrial Age of warfare and into the Informational Age of warfare. Network Centric Warfare (NCW) is the emerging theory to accomplish this undertaking. NCW describes "the combination of strategies, emerging tactics, techniques, and procedures, and organizations that a fully or even partially networked force can employ to create a decisive war fighting advantage." 1 This theory is turned into a concept through Network Centric Operations (NCO) and implemented through the FORCEnet operational construct and architectural framework. The coalition navies are moving in a direction to develop and leverage information more effectively and efficiently. This will lead to an informational advantage that can be used as a combat multiplier to shape and control the environment, so as to dissuade, deter, and decisively defeat any enemy. This analysis was comprised of defining three TTCP AG-6 provided vignettes into ARENA model that captured Coalition ESG configurations at various FORCEnet levels. The results of the analysis demonstrated that enhanced FORCEnet capabilities such as FORCEnet Levels 2 and 4 would satisfy the capability gap for a needed network-centric ESG force that can effectively counter insurgency operations in Maritime warfare. Furthermore, the participating allied navies in the Coalition ESG should pursue acquisition strategies to upgrade their ship platforms in accordance with our recommendation which indicates that FORCEnet Level 2 is the best value.http://archive.org/details/implicationoffor109456926N
Recommended from our members
Open-Source, Open-Architecture SoftwarePlatform for Plug-InElectric Vehicle SmartCharging in California
This interdisciplinary eXtensible Building Operating System–Vehicles project focuses on controlling plug-in electric vehicle charging at residential and small commercial settings using a novel and flexible open-source, open-architecture charge communication and control platform. The platform provides smart charging functionalities and benefits to the utility, homes, and businesses.This project investigates four important areas of vehicle-grid integration research, integrating technical as well as social and behavioral dimensions: smart charging user needs assessment, advanced load control platform development and testing, smart charging impacts, benefits to the power grid, and smart charging ratepayer benefits
JUNO Conceptual Design Report
The Jiangmen Underground Neutrino Observatory (JUNO) is proposed to determine
the neutrino mass hierarchy using an underground liquid scintillator detector.
It is located 53 km away from both Yangjiang and Taishan Nuclear Power Plants
in Guangdong, China. The experimental hall, spanning more than 50 meters, is
under a granite mountain of over 700 m overburden. Within six years of running,
the detection of reactor antineutrinos can resolve the neutrino mass hierarchy
at a confidence level of 3-4, and determine neutrino oscillation
parameters , , and to
an accuracy of better than 1%. The JUNO detector can be also used to study
terrestrial and extra-terrestrial neutrinos and new physics beyond the Standard
Model. The central detector contains 20,000 tons liquid scintillator with an
acrylic sphere of 35 m in diameter. 17,000 508-mm diameter PMTs with high
quantum efficiency provide 75% optical coverage. The current choice of
the liquid scintillator is: linear alkyl benzene (LAB) as the solvent, plus PPO
as the scintillation fluor and a wavelength-shifter (Bis-MSB). The number of
detected photoelectrons per MeV is larger than 1,100 and the energy resolution
is expected to be 3% at 1 MeV. The calibration system is designed to deploy
multiple sources to cover the entire energy range of reactor antineutrinos, and
to achieve a full-volume position coverage inside the detector. The veto system
is used for muon detection, muon induced background study and reduction. It
consists of a Water Cherenkov detector and a Top Tracker system. The readout
system, the detector control system and the offline system insure efficient and
stable data acquisition and processing.Comment: 328 pages, 211 figure
Potholes Ahead: Impact of Transient Link Blockage on Beam Steering in Practical mm-Wave Systems
The practical realization of beam steering mechanisms in millimeter wave communications has a large impact on performance. The key challenge is to find a pragmatic trade-off between throughput performance and the overhead of periodic beam sweeping required to improve link quality in case of transient link blockage. This is particularly critical in commercial off-the-shelf devices, which require simple yet efficient solutions. First, we analyze the operation of such a commercial device to understand the impact of link blockage in practice. To this end, we measure TCP throughput for different traffic loads while blocking the link at regular intervals. Second, we derive a Markov model based on our practical insights to compute throughput for the case of transient blockage. We use this model to evaluate the trade-off between throughput and periodic beam sweeping. Finally, we validate our results using throughput traces collected using the aforementioned commercial device. Both our model and our practical measurements show that transient blockage causes significant signal fluctuation due to suboptimal beam realignment. In particular, fluctuations increase with traffic load, limiting the achievable throughput. We show that choosing lower traffic loads allows us to reduce fluctuations by 41% while achieving the same net throughput than with higher traffic loads.TRUEpu
Tradespace Investigation of a Telescope Architecture for Next-generation Space Astronomy and Exploration
Humanity’s endeavor to further its scientific understanding of the celestial heavens has led to the creation and evolution of increasingly powerful and complex space telescopes. Space telescopes provide a view of the solar system, galaxy, and universe unobstructed by Earth’s atmosphere and have profoundly changed the way people view space. In an effort to further advance space telescope capability and achieve the accompanying scientific understanding, the Massachusetts Institute of Technology (MIT), specifically, course 16.89 Space Systems Engineering, explored the tradespace of architectural enumerations encompassed within the design of an ultraviolet-optical-infrared (UVOIR) space telescope located at Sun-Earth Lagrangian Point Two (SE-L2). SE-L2 presents several advantages as an operating location for a UVOIR telescope such as a thermally stable environment and an orbit that allows the telescope to maintain a constant orientation with respect to all of the primary sources of heat and light. The main disadvantages associated with SE-L2 are caused by its relatively large distance from Earth, which marginalizes the effectiveness of real-time telerobotics because of latency and increases the cost of communications, launch, and servicing. Course 16.89 believes that, for this UVOIR application, the strengths of this operating location outweigh its weaknesses and therefore decided to explore the family of opportunities associated with SE-L2.
This course used appropriate performance and system metrics to quantify the effectiveness of the aforementioned architectures and create a Pareto front of viable architectures. Evaluating the designs along the Pareto front allowed the course to characterize and group architectures and present these group-types to stakeholders for the selection of an optimal space telescope according to stakeholder requirements and resources. This course also developed sensitivity analysis, which allowed for a greater understanding of how architectural decisions affect the performance of the satellite. Segmentation, modularity, assembly, autonomy, and servicing were key aspects of this multidimensional analysis given the 16.8-meter class size and location of the telescope. Within the respective operating environment and for a spacecraft of similar characteristics, this model will allow stakeholders to predict the long-term operational effectiveness of different space telescope architectures and capture the synergistic effects of combining various architectural decisions into a spacecraft design.
The following sections step through the aforesaid analysis and design efforts conducted in 16.89 beginning with Section III, which explicitly performs the stakeholder analysis and articulates the requirements of the mission. Section IV gives an overview of past designs and expands upon the architecture enumerations pertinent to this project, while Section V presents the methods and metrics by which those architectures will be evaluated and the system metrics which will be balanced and optimized in the creation of this space telescope. Section VI will present the model validation of this project and Section VII will discuss the results and analyses of the project. Finally, Section VIII will explore the future work opportunities of this project, while Section IX will present the conclusions and recommendations drawn from this project.MIT Department of Aeronautics and Astronautic
- …
