57,533 research outputs found

    Pairing gaps and Fermi energies at scission for 296Lv alpha-decay

    Full text link
    The pairing corrections, the single particle occupation numbers, are investigated within density-dependent delta interaction formalism for pairing residual interactions. The potential barrier is computed in the framework of the macroscopic-microscopic model. The microscopic part is based on the Woods-Saxon two center shell model. The alpha-decay of a superheavy element is treated, by paying a special attention to the region of the scission configurations. The sequence of nuclear shapes follows the superasymmetric fission path for alpha decay. It was found that the pairing gaps of the states that reach asymptotically the potential well of the alpha particle have large values at scission but become zero after scission. The 1s1/2 single particle levels of the nascent alpha particle are fully occupied while the superior levels are empties in the scission region and remains in the same states during the penetration of the Coulomb barrier. The projection of the numbers of particle on the two fragments are obtained naturally. At scission, the nascent alpha particle forms a very bound cluster

    A TGA/FTIR and Mass Spectral Study on the Thermal Degradation of Bisphenol A Polycarbonate

    Get PDF
    The thermal degradation of polycarbonate under nitrogen was studied using TGA/FTIR, GC/MS and LC/MS as a function of mass loss. The gases evolved during degradation were inspected by in situ FTIR and then the evolved products were collected and analysed using FTIR, GC–MS and LC–MS. The structures of the evolved products are assigned on the basis of FTIR and GC/MS results. The main thermal degradation pathways follow chain scission of the isopropylidene linkage, and hydrolysis/alcoholysis and rearrangement of carbonate linkages. In the case of chain scission, it was proposed that methyl scission of isopropylidene occurs first, according to the bond dissociation energies. The presence of carbonate structures, 1,1′-bis(4-hydroxyl phenyl) ethane and bisphenol A in significant amounts, supports the view that chain scission and hydrolysis/alcoholysis are the main degradation pathways for the formation of the evolved products

    Nuclear Scission and Quantum Localization

    Full text link
    We examine nuclear scission within a fully quantum-mechanical microscopic framework, focusing on the non-local aspects of the theory. Using 240Pu^{240}\textrm{Pu} hot fission as an example, we discuss the identification of the fragments and the calculation of their kinetic, excitation, and interaction energies, through the localization of the orbital wave functions. We show that the "disentanglement" of the fragment wave functions is essential to the quantum-mechanical definition of scission and the calculation of physical observables. Finally, we discuss the fragments' pre-scission excitation mechanisms and give a non-adiabatic description of their evolution beyond scission.Comment: 4 pages, 3 figures, submitted to Physical Review Letter

    Microscopic calculation of 240Pu scission with a finite-range effective force

    Full text link
    Hartree-Fock-Bogoliubov calculations of hot fission in 240Pu^{240}\textrm{Pu} have been performed with a newly-implemented code that uses the D1S finite-range effective interaction. The hot-scission line is identified in the quadrupole-octupole-moment coordinate space. Fission-fragment shapes are extracted from the calculations. A benchmark calculation for 226Th^{226}\textrm{Th} is obtained and compared to results in the literature. In addition, technical aspects of the use of HFB calculations for fission studies are examined in detail. In particular, the identification of scission configurations, the sensitivity of near-scission calculations to the choice of collective coordinates in the HFB iterations, and the formalism for the adjustment of collective-variable constraints are discussed. The power of the constraint-adjustment algorithm is illustrated with calculations near the critical scission configurations with up to seven simultaneous constraints.Comment: 18 pages, 24 figures, to be published in Physical Review

    Pre-scission neutron multiplicity associated with the dynamical process in superheavy mass region

    Get PDF
    The fusion-fission process accompanied by neutron emission is studied in the superheavy-mass region on the basis of the fluctuation-dissipation model combined with a statistical model. The calculation of the trajectory or the shape evolution in the deformation space of the nucleus with neutron emission is performed. Each process (quasi-fission, fusion-fission, and deep quasi-fission processes) has a characteristic travelling time from the point of contact of colliding nuclei to the scission point. These dynamical aspects of the whole process are discussed in terms of the pre-scission neutron multiplicity, which depends on the time spent on each process. We have presented the details of the characteristics of our model calculation in the reactions 48^{48}Ca+208^{208}Pb and 48^{48}Ca+244^{244}Pu, and shown how the structure of the distribution of pre-scission neutron multiplicity depends on the incident energy.Comment: 19 pages, 12 figures, Accepted for publication in J. Phys.

    Correlation studies of fission fragment neutron multiplicities

    Full text link
    We calculate neutron multiplicities from fission fragments with specified mass numbers for events having a specified total fragment kinetic energy. The shape evolution from the initial compound nucleus to the scission configurations is obtained with the Metropolis walk method on the five-dimensional potential-energy landscape, calculated with the macroscopic-microscopic method for the three-quadratic-surface shape family. Shape-dependent microscopic level densities are used to guide the random walk, to partition the intrinsic excitation energy between the two proto-fragments at scission, and to determine the spectrum of the neutrons evaporated from the fragments. The contributions to the total excitation energy of the resulting fragments from statistical excitation and shape distortion at scission is studied. Good agreement is obtained with available experimental data on neutron multiplicities in correlation with fission fragments from 235^{235}U(nth_{\rm th},f). At higher neutron energies a superlong fission mode appears which affects the dependence of the observables on the total fragment kinetic energy.Comment: 12 pages, 10 figure

    Quest for consistent modelling of statistical decay of the compound nucleus

    Full text link
    A statistical model description of heavy ion induced fusion-fission reactions is presented where shell effects, collective enhancement of level density, tilting away effect of compound nuclear spin and dissipation are included. It is shown that the inclusion of all these effects provides a consistent picture of fission where fission hindrance is required to explain the experimental values of both pre-scission neutron multiplicities and evaporation residue cross-sections in contrast to some of the earlier works where a fission hindrance is required for pre-scission neutrons but a fission enhancement for evaporation residue cross-sections.Comment: 14 pages, 2 figure
    corecore