7 research outputs found

    Scientific Image Restoration Anywhere

    Full text link
    The use of deep learning models within scientific experimental facilities frequently requires low-latency inference, so that, for example, quality control operations can be performed while data are being collected. Edge computing devices can be useful in this context, as their low cost and compact form factor permit them to be co-located with the experimental apparatus. Can such devices, with their limited resources, can perform neural network feed-forward computations efficiently and effectively? We explore this question by evaluating the performance and accuracy of a scientific image restoration model, for which both model input and output are images, on edge computing devices. Specifically, we evaluate deployments of TomoGAN, an image-denoising model based on generative adversarial networks developed for low-dose x-ray imaging, on the Google Edge TPU and NVIDIA Jetson. We adapt TomoGAN for edge execution, evaluate model inference performance, and propose methods to address the accuracy drop caused by model quantization. We show that these edge computing devices can deliver accuracy comparable to that of a full-fledged CPU or GPU model, at speeds that are more than adequate for use in the intended deployments, denoising a 1024 x 1024 image in less than a second. Our experiments also show that the Edge TPU models can provide 3x faster inference response than a CPU-based model and 1.5x faster than an edge GPU-based model. This combination of high speed and low cost permits image restoration anywhere.Comment: 6 pages, 8 figures, 1 tabl

    Exploration of TPUs for AI Applications

    Full text link
    Tensor Processing Units (TPUs) are specialized hardware accelerators for deep learning developed by Google. This paper explores the performance of TPU with a focus on AI and its implementation in edge computing. It first provides an overview of TPUs, specifically their design in relation to neural networks, their general architecture, compilation techniques and supporting frameworks. Furthermore, we provide a comparative analysis of Cloud and Edge TPU performance against other counterpart chip architectures. It is then discussed how TPUs can be used to speed up AI workloads. The results show that TPUs can provide significant performance improvements both in cloud and edge computing. Additionally, we address the need for further research for the deployment of more architectures in the Edge TPU, as well as the need for the development of more robust comparisons in edge computing.Comment: Research done by the Robotics & AI Club at IE Universit

    Neural Network Methods for Radiation Detectors and Imaging

    Full text link
    Recent advances in image data processing through machine learning and especially deep neural networks (DNNs) allow for new optimization and performance-enhancement schemes for radiation detectors and imaging hardware through data-endowed artificial intelligence. We give an overview of data generation at photon sources, deep learning-based methods for image processing tasks, and hardware solutions for deep learning acceleration. Most existing deep learning approaches are trained offline, typically using large amounts of computational resources. However, once trained, DNNs can achieve fast inference speeds and can be deployed to edge devices. A new trend is edge computing with less energy consumption (hundreds of watts or less) and real-time analysis potential. While popularly used for edge computing, electronic-based hardware accelerators ranging from general purpose processors such as central processing units (CPUs) to application-specific integrated circuits (ASICs) are constantly reaching performance limits in latency, energy consumption, and other physical constraints. These limits give rise to next-generation analog neuromorhpic hardware platforms, such as optical neural networks (ONNs), for high parallel, low latency, and low energy computing to boost deep learning acceleration
    corecore