18 research outputs found

    Schulze and Ranked-Pairs Voting are Fixed-Parameter Tractable to Bribe, Manipulate, and Control

    Full text link
    Schulze and ranked-pairs elections have received much attention recently, and the former has quickly become a quite widely used election system. For many cases these systems have been proven resistant to bribery, control, or manipulation, with ranked pairs being particularly praised for being NP-hard for all three of those. Nonetheless, the present paper shows that with respect to the number of candidates, Schulze and ranked-pairs elections are fixed-parameter tractable to bribe, control, and manipulate: we obtain uniform, polynomial-time algorithms whose degree does not depend on the number of candidates. We also provide such algorithms for some weighted variants of these problems

    Solving Hard Control Problems in Voting Systems via Integer Programming

    Full text link
    Voting problems are central in the area of social choice. In this article, we investigate various voting systems and types of control of elections. We present integer linear programming (ILP) formulations for a wide range of NP-hard control problems. Our ILP formulations are flexible in the sense that they can work with an arbitrary number of candidates and voters. Using the off-the-shelf solver Cplex, we show that our approaches can manipulate elections with a large number of voters and candidates efficiently

    Fine-Grained Complexity and Algorithms for the Schulze Voting Method

    Full text link
    We study computational aspects of a well-known single-winner voting rule called the Schulze method [Schulze, 2003] which is used broadly in practice. In this method the voters give (weak) ordinal preference ballots which are used to define the weighted majority graph (WMG) of direct comparisons between pairs of candidates. The choice of the winner comes from indirect comparisons in the graph, and more specifically from considering directed paths instead of direct comparisons between candidates. When the input is the WMG, to our knowledge, the fastest algorithm for computing all winners in the Schulze method uses a folklore reduction to the All-Pairs Bottleneck Paths problem and runs in O(m2.69)O(m^{2.69}) time, where mm is the number of candidates. It is an interesting open question whether this can be improved. Our first result is a combinatorial algorithm with a nearly quadratic running time for computing all winners. This running time is essentially optimal. If the input to the Schulze winners problem is not the WMG but the preference profile, then constructing the WMG is a bottleneck that increases the running time significantly; in the special case when there are mm candidates and n=O(m)n=O(m) voters, the running time is O(m2.69)O(m^{2.69}), or O(m2.5)O(m^{2.5}) if there is a nearly-linear time algorithm for multiplying dense square matrices. To address this bottleneck, we prove a formal equivalence between the well-studied Dominance Product problem and the problem of computing the WMG. We prove a similar connection between the so called Dominating Pairs problem and the problem of finding a winner in the Schulze method. Our paper is the first to bring fine-grained complexity into the field of computational social choice. Using it we can identify voting protocols that are unlikely to be practical for large numbers of candidates and/or voters, as their complexity is likely, say at least cubic.Comment: 19 pages, 2 algorithms, 2 tables. A previous version of this work appears in EC 2021. In this version we strengthen Theorem 6.2 which now holds also for the problem of finding a Schulze winne

    Search versus Search for Collapsing Electoral Control Types

    Full text link
    Electoral control types are ways of trying to change the outcome of elections by altering aspects of their composition and structure [BTT92]. We say two compatible (i.e., having the same input types) control types that are about the same election system E form a collapsing pair if for every possible input (which typically consists of a candidate set, a vote set, a focus candidate, and sometimes other parameters related to the nature of the attempted alteration), either both or neither of the attempted attacks can be successfully carried out [HHM20]. For each of the seven general (i.e., holding for all election systems) electoral control type collapsing pairs found by Hemaspaandra, Hemaspaandra, and Menton [HHM20] and for each of the additional electoral control type collapsing pairs of Carleton et al. [CCH+ 22] for veto and approval (and many other election systems in light of that paper's Theorems 3.6 and 3.9), both members of the collapsing pair have the same complexity since as sets they are the same set. However, having the same complexity (as sets) is not enough to guarantee that as search problems they have the same complexity. In this paper, we explore the relationships between the search versions of collapsing pairs. For each of the collapsing pairs of Hemaspaandra, Hemaspaandra, and Menton [HHM20] and Carleton et al. [CCH+ 22], we prove that the pair's members' search-version complexities are polynomially related (given access, for cases when the winner problem itself is not in polynomial time, to an oracle for the winner problem). Beyond that, we give efficient reductions that from a solution to one compute a solution to the other. For the concrete systems plurality, veto, and approval, we completely determine which of their (due to our results) polynomially-related collapsing search-problem pairs are polynomial-time computable and which are NP-hard.Comment: The metadata's abstract is abridged due to arXiv.org's abstract-length limit. The paper itself has the unabridged (i.e., full) abstrac

    Public Evidence from Secret Ballots

    Full text link
    Elections seem simple---aren't they just counting? But they have a unique, challenging combination of security and privacy requirements. The stakes are high; the context is adversarial; the electorate needs to be convinced that the results are correct; and the secrecy of the ballot must be ensured. And they have practical constraints: time is of the essence, and voting systems need to be affordable and maintainable, and usable by voters, election officials, and pollworkers. It is thus not surprising that voting is a rich research area spanning theory, applied cryptography, practical systems analysis, usable security, and statistics. Election integrity involves two key concepts: convincing evidence that outcomes are correct and privacy, which amounts to convincing assurance that there is no evidence about how any given person voted. These are obviously in tension. We examine how current systems walk this tightrope.Comment: To appear in E-Vote-Id '1
    corecore