4 research outputs found

    Static scheduling in clouds

    Get PDF
    Cloud computing aims to give users virtually unlimited pay-per-use computing resources without the burden of managing the underlying infrastructure. We present a new job execution environment Flextic that exploits scal- able static scheduling techniques to provide the user with a flexible pricing model, such as a tradeoff between dif- ferent degrees of execution speed and execution price, and at the same time, reduce scheduling overhead for the cloud provider. We have evaluated a prototype of Flextic on Amazon EC2 and compared it against Hadoop. For various data parallel jobs from machine learning, im- age processing, and gene sequencing that we considered, Flextic has low scheduling overhead and reduces job du- ration by up to 15% compared to Hadoop, a dynamic cloud scheduler

    Strategic and operational services for workload management in the cloud

    Full text link
    In hosting environments such as Infrastructure as a Service (IaaS) clouds, desirable application performance is typically guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated by a service provider for unencumbered use by customers to ensure proper operation of their workloads. Most IaaS offerings are presented to customers as fixed-size and fixed-price SLAs, that do not match well the needs of specific applications. Furthermore, arbitrary colocation of applications with different SLAs may result in inefficient utilization of hosts' resources, resulting in economically undesirable customer behavior. In this thesis, we propose the design and architecture of a Colocation as a Service (CaaS) framework: a set of strategic and operational services that allow the efficient colocation of customer workloads. CaaS strategic services provide customers the means to specify their application workload using an SLA language that provides them the opportunity and incentive to take advantage of any tolerances they may have regarding the scheduling of their workloads. CaaS operational services provide the information necessary for, and carry out the reconfigurations mandated by strategic services. We recognize that it could be the case that there are multiple, yet functionally equivalent ways to express an SLA. Thus, towards that end, we present a service that allows the provably-safe transformation of SLAs from one form to another for the purpose of achieving more efficient colocation. Our CaaS framework could be incorporated into an IaaS offering by providers or it could be implemented as a value added proposition by IaaS resellers. To establish the practicality of such offerings, we present a prototype implementation of our proposed CaaS framework

    Strategic and operational services for workload management in the cloud (PhD thesis)

    Full text link
    In hosting environments such as Infrastructure as a Service (IaaS) clouds, desirable application performance is typically guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated by a service provider for unencumbered use by customers to ensure proper operation of their workloads. Most IaaS offerings are presented to customers as fixed-size and fixed-price SLAs, that do not match well the needs of specific applications. Furthermore, arbitrary colocation of applications with different SLAs may result in inefficient utilization of hosts’ resources, resulting in economically undesirable customer behavior. In this thesis, we propose the design and architecture of a Colocation as a Service (CaaS) framework: a set of strategic and operational services that allow the efficient colocation of customer workloads. CaaS strategic services provide customers the means to specify their application workload using an SLA language that provides them the opportunity and incentive to take advantage of any tolerances they may have regarding the scheduling of their workloads. CaaS operational services provide the information necessary for, and carry out the reconfigurations mandated by strategic services. We recognize that it could be the case that there are multiple, yet functionally equivalent ways to express an SLA. Thus, towards that end, we present a service that allows the provably-safe transformation of SLAs from one form to another for the purpose of achieving more efficient colocation. Our CaaS framework could be incorporated into an IaaS offering by providers or it could be implemented as a value added proposition by IaaS resellers. To establish the practicality of such offerings, we present a prototype implementation of our proposed CaaS framework. (Major Advisor: Azer Bestavros

    Scheduling large jobs by abstraction refinement

    No full text
    The static scheduling problem often arises as a fundamental problem in real-time systems and grid computing. We consider the problem of statically scheduling a large job expressed as a task graph on a large number of computing nodes, such as a data center. This paper solves the large-scale static scheduling problem using abstraction refinement, a technique commonly used in formal verification to efficiently solve computationally hard problems. A scheduler based on abstraction refinement first attempts to solve the scheduling problem with abstract representations of the job and the computing resources. As abstract representations are generally small, the scheduling can be done reasonably fast. If the obtained schedule does not meet specified quality conditions (lik
    corecore