5 research outputs found

    Call admission control for interactive multimedia satellite networks.

    Get PDF
    Master of Science in Engineering (Electronic). University of KwaZulu-Natal, Durban 2015.Satellite communication has become an integral component of global access communication network due mainly to its ubiquitous coverage, large bandwidth and ability to support for large numbers of users over fixed and mobile devices. However, the multiplicity of multimedia applications with diverse requirements in terms of quality of service (QoS) poses new challenges in managing the limited and expensive resources. Furthermore, the time-varying nature of the propagation channel due to atmospheric and environmental effects also poses great challenges to effective utilization of resources and the satisfaction of users’ QoS requirements. Efficient radio resource management (RRM) techniques such as call admission control (CAC) and adaptive modulation and coding (AMC) are required in order to guarantee QoS satisfaction for user established connections and realize maximum and efficient utilization of network resources. In this work, we propose two CAC policies for interactive satellite multimedia networks. The two policies are based on efficient adaptation of transmission parameters to the dynamic link characteristics. In the first policy which we refer to as Gaussian Call Admission Control with Link Adaptation (GCAC-LA), we invoke the central limit theorem to statistically multiplex rate based dynamic capacity (RBDC) connections and obtain an aggregate bandwidth and required capacity for the multiplex. Adaptive Modulation and Coding (AMC) is employed for transmission over the time-varying wireless channel of the return link of an interactive satellite network. By associating users’ channel states to particular transmission parameters, the amount of resources required to satisfy user connection requirements in each state is determined. Thus the admission control policy considers in its decision, the channel states of all existing and new connections. The performance of the system is investigated by simulation and the results show that AMC significantly improves the utilization and call blocking performance by more than twice that of a system without link adaptation. In the second policy, a Game Theory based CAC policy with link adaptation (GTCAC-LA) is proposed. The admission of a new user connection under the GTCAC-LA policy is based on a non-cooperative game that is played between the network (existing user connections) and the new connection. A channel prediction scheme that predicts the rain attenuation on the link in successive intervals of time is also proposed. This determines the current resource allocation for every source at any point in time. The proposed game is played each time a new connection arrives and the strategies adopted by players are based on utility function, which is estimated based on the required capacity and the actual resources allocated. The performance of the CAC policy is investigated for different prediction intervals and the results show that multiple interval prediction scheme shows better performance than the single interval scheme. Performance of the proposed CAC policies indicates their suitability for QoS provisioning for traffic of multimedia connections in future 5G networks

    Packet scheduling in satellite HSDPA networks.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2010.The continuous growth in wireless networks is not showing any sign of slowing down as new services, new technologies and new mobile users continue to emerge. Satellite networks are expected to complement the terrestrial network and be a valid option to provide broadband communications services to both fixed and mobile users in scenarios where terrestrial networks cannot be used due to technical and economical viability. In the current emerging satellite networks, where different users with varying traffic demands ranging from multimedia, voice to data and with limited capacity, Radio Resource Management (RRM) is considered as one of the most significant and challenging aspect needed to provide acceptable quality of service that will meet the requirements of the different mobile users. This dissertation considers Packet Scheduling in the Satellite High Speed Downlink Packet Access (S-HSDPA) network. The main focus of this dissertation is to propose a new cross-layer designed packet scheduling scheme, which is one of the functions of RRM, called Queue Aware Channel Based (QACB) Scheduler. The proposed scheduler, which, attempts to sustain the quality of service requirements of different traffic requests, improves the system performance compared to the existing schedulers. The performance analysis comparison of the throughput, delay and fairness is determined through simulations. These metrics have been chosen they are three major performance indices used in wireless communications. Due to long propagation delay in HSDPA via GEO satellite, there is misalignment between the instantaneous channel condition of the mobile user and the one reported to the base station (Node B) in S-HSDPA. This affects effectiveness of the channel based packet schedulers and leads to either under utilization of resource or loss of packets. Hence, this dissertation investigates the effect of the introduction of a Signal-to-Noise (SNR) Margin which is used to mitigate the effect of the long propagation delay on performance of S-HSDPA, and the appropriate SNR margin to be used to achieve the best performance is determined. This is determined using both a semi-analytical and a simulation approach. The results show that the SNR margin of 1.5 dB produces the best performance. Finally, the dissertation investigates the effect of the different Radio Link Control (RLC) Transmission modes which are Acknowledged Mode (AM) and Unacknowledged Mode (UM) as it affects different traffic types and schedulers in S-HSDPA. Proportional fair (PF) scheduler and our proposed, QACB, scheduler have been considered as the schedulers for this investigation. The results show that traffic types are sensitive to the transmitting RLC modes and that the QACB scheduler provides better performance compared to PF scheduler in the two RLC modes considered

    Scheduling for differentiated traffic types in HSDPA cellular systems

    No full text
    This paper proposes a novel packet scheduler for the High Speed Downlink Packet Access (HSDPA) air interface. In designing the scheduler we take in account two different user types and two distinct traffic classes. Our aim is to differentiate the quality of service and at the same time to achieve a high throughput and a fair allocation of resources among users. The performance of the proposed scheme is compared through simulations with other scheduling techniques (e.g., maximum SIR). This work is the outcome of a joint activity between the University of Siena and CUNY

    Packet scheduling in satellite LTE networks employing MIMO technology.

    Get PDF
    Doctor of Philosophy in Electronic Engineering. University of KwaZulu-Natal, Durban 2014.Rapid growth in the number of mobile users and ongoing demand for different types of telecommunication services from mobile networks, have driven the need for new technologies that provide high data rates and satisfy their respective Quality of Service (QoS) requirements, irrespective of their location. The satellite component will play a vital role in these new technologies, since the terrestrial component is not able to provide global coverage due to economic and technical limitations. This has led to the emergence of Satellite Long Term Evolution (LTE) networks which employ Multiple-In Multiple-Out (MIMO) technology. In order to achieve the set QoS targets, required data rates and fairness among various users with different traffic demands in the satellite LTE network, it is crucial to design an effective scheduling and a sub-channel allocation scheme that will provide an optimal balance of all these requirements. It is against this background that this study investigates packet scheduling in satellite LTE networks employing MIMO technology. One of the main foci of this study is to propose new cross-layer based packet scheduling schemes, tagged Queue Aware Fair (QAF) and Channel Based Queue Sensitive (CBQS) scheduling schemes. The proposed schemes are designed to improve both fairness and network throughput without compromising users’ QoS demands, as they provide a good trade-off between throughput, QoS demands and fairness. They also improve the performance of the network in comparison with other scheduling schemes. The comparison is determined through simulations. Due to the fact that recent schedulers provide a trade-off among major performance indices, a new performance index to evaluate the overall performance of each scheduler is derived. This index is tagged the Scheduling Performance Metric (SPM). The study also investigates the impact of the long propagation delay and different effective isotropic radiated powers on the performance of the satellite LTE network. The results show that both have a significant impact on network performance. In order to actualize an optimal scheduling scheme for the satellite LTE network, the scheduling problem is formulated as an optimization function and an optimal solution is obtained using Karush-Kuhn-Tucker multipliers. The obtained Near Optimal Scheduling Scheme (NOSS), whose aim is to maximize the network throughput without compromising users’ QoS demands and fairness, provides better throughput and spectral efficiency performance than other schedulers. The comparison is determined through simulations. Based on the new SPM, the proposed NOSS1 and NOSS2 outperform other schedulers. A stability analysis is also presented to determine whether or not the proposed scheduler will provide a stable network. A fluid limit technique is used for the stability analysis. Finally, a sub-channel allocation scheme is proposed, with the aim of providing a better sub-channel or Physical Resource Block (PRB) allocation method, tagged the Utility Auction Based (UAB) subchannel allocation scheme that will improve the system performance of the satellite LTE network. The results show that the proposed method performs better than the other scheme. The comparison is obtained through simulations

    Energy efficient medium access protocol for DS-CDMA based wireless sesor networks.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.Wireless Sensor Networks (WSN), a new class of devices, has the potential to revolutionize the capturing, processing, and communication of critical data at low cost. Sensor networks consist of small, low-power, and low-cost devices with limited computational and wireless communication capabilities. These sensor nodes can only transmit a finite number of messages before they run out of energy. Thus, reducing the energy consumption per node for end-to-end data transmission is an important design consideration for WSNs. The Medium Access Control (MAC) protocols aim at providing collision-free access to the wireless medium. MAC protocols also provide the most direct control over the utilization of the transceiver, which consumes most of the energy of the sensor nodes. The major part of this thesis is based on a proposed MAC protocol called Distributed Receiver-oriented MAC (DRMACSN) protocol for code division multiple access (CDMA) based WSNs. The proposed MAC protocol employs the channel load blocking scheme to reduce energy consumption in the network. The performance of the proposed MAC protocol is verified through simulations for average packet throughput, average delay and energy consumption. The performance of the proposed MAC protocol is also compared to the IEEE 802.15.4 MAC and the MAC without the channel load sensing scheme via simulations. An analytical model is derived to analyse the average packet throughput and average energy consumption performance for the DRMACSN MAC protocol. The packet success probability, the message success and blocking probabilities are derived for the DRMACSN MAC protocol. The discrete-time multiple vacation queuing models are used to model the delay behaviour of the DRMACSN MAC protocol. The Probability Generating Functions (PGF) of the arrivals of new messages in sleep, back-off and transmit states are derived. The PGF of arrivals of retransmitted packets of a new message are also derived. The queue length and delay expressions for both the Bernoulli and Poisson message arrival models are derived. Comparison between the analytical and simulation results shows that the analytical model is accurate. The proposed MAC protocol is aimed at having an improved average packet throughput, a reduced packet delay, reduced energy consumption performance for WSN
    corecore