1 research outputs found

    Admission control and resource allocation for LTE uplink systems

    Get PDF
    Long Term Evolution (LTE) radio technologies aim not only to increase the capacity of mobile telephone networks, but also to provide high throughput, low latency, an improved end-to-end Quality of Service (QoS) and a simple architecture. The Third Generation Partnership Project (3GPP) has defined Single Carrier FDMA (SC-FDMA) as the access technique for the uplink and Orthogonal Frequency Division Multiple Access (OFDMA) for the downlink. It is well known that scheduling and admission control play an important role for QoS provisioning, and that they are strongly related. Knowing that we can take full advantage of this property we can design an admission control mechanism that uses the design criterion of the scheduling scheme. In this thesis, we developed two new algorithms for handling single-class resource allocation and two algorithms for handling multi-class resource allocation, as well as a new admission control scheme for handling multi-class Grade of Service (GoS) and QoS in uplink LTE systems. We also present a combined solution that uses the resource allocation and the admission control properties to satisfy the GoS and QoS requirements. System performance is evaluated using simulations. Numerical results show that the proposed scheduling algorithms can handle multi-class QoS in LTE uplink systems with a little increase in complexity, and can be used in conjunction with admission control to meet the LTE requirements. In addition, the proposed admission control algorithm gain for the most sensitive traffic can be increased without sacrificing the overall system capacity. At the same time, guaranteeing GoS and maintaining the basic QoS requirements for all the admitted requests
    corecore