1,268 research outputs found

    Analysing TDMA with slot skipping

    Get PDF
    We propose a schedulability analysis for a particular class of time division multiple access (TDMA) networks, which we label as TDMA/SS. SS stands for slot skipping, reflecting the fact that a slot is skipped whenever it is not used. Hence, the next slot can start earlier in benefit of hard real-time traffic. In the proposed schedulability analysis, we assume knowledge of all message streams in the system, and that each node schedules messages in its output queue according to a rate monotonic policy (as an example). We present the analysis in two steps. Firstly, we address the case where a node is only permitted to transmit a maximum of one message per TDMA cycle. Secondly, we generalise the analysis to the case where a node is assigned a budget of messages per TDMA cycle it may transmit. A simple algorithm to assign budgets to nodes is also presented

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Voice Over Sensor Networks

    Get PDF
    Wireless sensor networks have traditionally focused on low duty-cycle applications where sensor data are reported periodically in the order of seconds or even longer. This is due to typically slow changes in physical variables, the need to keep node costs low and the goal of extending battery lifetime. However, there is a growing need to support real-time streaming of audio and/or low-rate video even in wireless sensor networks for use in emergency situations and shortterm intruder detection. In this paper, we describe a real-time voice stream-capability in wireless sensor networks and summarize our deployment experiences of voice streaming across a large sensor network of FireFly nodes in an operational coal mine. FireFly is composed of several integrated layers including specialized low-cost hardware, a sensor network operating system, a real-time link layer and network scheduling. We are able to provide efficient support for applications with timing constraints by tightly coupling the network and task scheduling with hardware-based global time synchronization. We use this platform to support 2-way audio streaming concurrently with sensing tasks. For interactive voice, we investigate TDMA-based slot scheduling with balanced bi-directional latency while meeting audio timeliness requirements. Finally, we describe our experimental deployment of 42 nodes in a coal mine, and present measurements of the end-to-end throughput, jitter, packet loss and voice quality

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Cross-layer schemes for performance optimization in wireless networks

    Get PDF
    Wireless networks are undergoing rapid progress and inspiring numerous applications. As the application of wireless networks becomes broader, they are expected to not only provide ubiquitous connectivity, but also support end users with certain service guarantees. End-to-end delay is an important Quality of Service (QoS) metric in multihop wireless networks. This dissertation addresses how to minimize end-to-end delay through joint optimization of network layer routing and link layer scheduling. Two cross-layer schemes, a loosely coupled cross-layer scheme and a tightly coupled cross-layer scheme, are proposed. The two cross-layer schemes involve interference modeling in multihop wireless networks with omnidirectional antenna. In addition, based on the interference model, multicast schedules are optimized to minimize the total end-to-end delay. Throughput is another important QoS metric in wireless networks. This dissertation addresses how to leverage the spatial multiplexing function of MIMO links to improve wireless network throughput. Wireless interference modeling of a half-duplex MIMO node is presented. Based on the interference model, routing, spatial multiplexing, and scheduling are jointly considered in one optimization model. The throughput optimization problem is first addressed in constant bit rate networks and then in variable bit rate networks. In a variable data rate network, transmitters can use adaptive coding and modulation schemes to change their data rates so that the data rates are supported by the Signal to Noise and Interference Ratio (SINR). The problem of achieving maximum throughput in a millimeter-wave wireless personal area network is studied --Abstract, page iv

    Simulation of Mixed Critical In-vehicular Networks

    Full text link
    Future automotive applications ranging from advanced driver assistance to autonomous driving will largely increase demands on in-vehicular networks. Data flows of high bandwidth or low latency requirements, but in particular many additional communication relations will introduce a new level of complexity to the in-car communication system. It is expected that future communication backbones which interconnect sensors and actuators with ECU in cars will be built on Ethernet technologies. However, signalling from different application domains demands for network services of tailored attributes, including real-time transmission protocols as defined in the TSN Ethernet extensions. These QoS constraints will increase network complexity even further. Event-based simulation is a key technology to master the challenges of an in-car network design. This chapter introduces the domain-specific aspects and simulation models for in-vehicular networks and presents an overview of the car-centric network design process. Starting from a domain specific description language, we cover the corresponding simulation models with their workflows and apply our approach to a related case study for an in-car network of a premium car

    Industrial Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are penetrating our daily lives, and they are starting to be deployed even in an industrial environment. The research on such industrial wireless sensor networks (IWSNs) considers more stringent requirements of robustness, reliability, and timeliness in each network layer. This Special Issue presents the recent research result on industrial wireless sensor networks. Each paper in this Special Issue has unique contributions in the advancements of industrial wireless sensor network research and we expect each paper to promote the relevant research and the deployment of IWSNs
    • …
    corecore