5 research outputs found

    Static Scheduling Strategies for Heterogeneous Systems

    Get PDF
    In this paper, we consider static scheduling techniques for heterogeneous systems, such as clusters and grids. We successively deal with minimum makespan scheduling, divisible load scheduling and steady-state scheduling. Finally, we discuss the limitations of static scheduling approaches

    SCHEDULING STRATEGIES FOR MIXED DATA AND TASK PARALLELISM ON HETEROGENEOUS CLUSTERS

    No full text
    We consider the execution of a complex application on a heterogeneous “grid” computing platform. The complex application consists of a suite of identical, independent problems to be solved. In turn, each problem consists of a set of tasks. There are dependences (precedence constraints) between these tasks and these dependences are organized as a tree. A typical example is the repeated execution of the same algorithm on several distinct data samples. We use a non-oriented graph to model the grid platform, where resources have different speeds of computation and communication. We show how to determine the optimal steady-state scheduling strategy for each processor (the fraction of time spent computing and the fraction of time spent communicating with each neighbor). This result holds for a quite general framework, allowing for cycles and multiple paths in the platform graph

    Scheduling strategies for mixed data and task parallelism on heterogeneous clusters and grids

    No full text
    International audienceWe consider the execution of a complex application on a heterogeneous "Grid" computing platform. The complex application consists of a suite of identical, independent problems to be solved. In turn, each problem consists of a set of tasks. There are dependences (precedence constraints) between these tasks. A typical example is the repeated execution of the same algorithm on several distinct data samples. We use a non-oriented graph to model the Grid platform, where resources have different speeds of computation and communication. We show how to determine the optimal steady-state scheduling strategy for each processor (the fraction of time spent computing and the fraction of time spent communicating with each neighbor). This result holds for a quite general framework, allowing for cycles and multiple paths in the platform graph
    corecore