3,856 research outputs found

    Approximate Message Passing in Coded Aperture Snapshot Spectral Imaging

    Full text link
    We consider a compressive hyperspectral imaging reconstruction problem, where three-dimensional spatio-spectral information about a scene is sensed by a coded aperture snapshot spectral imager (CASSI). The approximate message passing (AMP) framework is utilized to reconstruct hyperspectral images from CASSI measurements, and an adaptive Wiener filter is employed as a three-dimensional image denoiser within AMP. We call our algorithm "AMP-3D-Wiener." The simulation results show that AMP-3D-Wiener outperforms existing widely-used algorithms such as gradient projection for sparse reconstruction (GPSR) and two-step iterative shrinkage/thresholding (TwIST) given the same amount of runtime. Moreover, in contrast to GPSR and TwIST, AMP-3D-Wiener need not tune any parameters, which simplifies the reconstruction process.Comment: to appear in Globalsip 201

    Adaptive Temporal Compressive Sensing for Video

    Full text link
    This paper introduces the concept of adaptive temporal compressive sensing (CS) for video. We propose a CS algorithm to adapt the compression ratio based on the scene's temporal complexity, computed from the compressed data, without compromising the quality of the reconstructed video. The temporal adaptivity is manifested by manipulating the integration time of the camera, opening the possibility to real-time implementation. The proposed algorithm is a generalized temporal CS approach that can be incorporated with a diverse set of existing hardware systems.Comment: IEEE Interonal International Conference on Image Processing (ICIP),201

    The Application of Preconditioned Alternating Direction Method of Multipliers in Depth from Focal Stack

    Get PDF
    Post capture refocusing effect in smartphone cameras is achievable by using focal stacks. However, the accuracy of this effect is totally dependent on the combination of the depth layers in the stack. The accuracy of the extended depth of field effect in this application can be improved significantly by computing an accurate depth map which has been an open issue for decades. To tackle this issue, in this paper, a framework is proposed based on Preconditioned Alternating Direction Method of Multipliers (PADMM) for depth from the focal stack and synthetic defocus application. In addition to its ability to provide high structural accuracy and occlusion handling, the optimization function of the proposed method can, in fact, converge faster and better than state of the art methods. The evaluation has been done on 21 sets of focal stacks and the optimization function has been compared against 5 other methods. Preliminary results indicate that the proposed method has a better performance in terms of structural accuracy and optimization in comparison to the current state of the art methods.Comment: 15 pages, 8 figure
    • …
    corecore