15,421 research outputs found

    Object Level Deep Feature Pooling for Compact Image Representation

    Full text link
    Convolutional Neural Network (CNN) features have been successfully employed in recent works as an image descriptor for various vision tasks. But the inability of the deep CNN features to exhibit invariance to geometric transformations and object compositions poses a great challenge for image search. In this work, we demonstrate the effectiveness of the objectness prior over the deep CNN features of image regions for obtaining an invariant image representation. The proposed approach represents the image as a vector of pooled CNN features describing the underlying objects. This representation provides robustness to spatial layout of the objects in the scene and achieves invariance to general geometric transformations, such as translation, rotation and scaling. The proposed approach also leads to a compact representation of the scene, making each image occupy a smaller memory footprint. Experiments show that the proposed representation achieves state of the art retrieval results on a set of challenging benchmark image datasets, while maintaining a compact representation.Comment: Deep Vision 201

    Medical Image Classification via SVM using LBP Features from Saliency-Based Folded Data

    Full text link
    Good results on image classification and retrieval using support vector machines (SVM) with local binary patterns (LBPs) as features have been extensively reported in the literature where an entire image is retrieved or classified. In contrast, in medical imaging, not all parts of the image may be equally significant or relevant to the image retrieval application at hand. For instance, in lung x-ray image, the lung region may contain a tumour, hence being highly significant whereas the surrounding area does not contain significant information from medical diagnosis perspective. In this paper, we propose to detect salient regions of images during training and fold the data to reduce the effect of irrelevant regions. As a result, smaller image areas will be used for LBP features calculation and consequently classification by SVM. We use IRMA 2009 dataset with 14,410 x-ray images to verify the performance of the proposed approach. The results demonstrate the benefits of saliency-based folding approach that delivers comparable classification accuracies with state-of-the-art but exhibits lower computational cost and storage requirements, factors highly important for big data analytics.Comment: To appear in proceedings of The 14th International Conference on Machine Learning and Applications (IEEE ICMLA 2015), Miami, Florida, USA, 201

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval

    Strategies for Searching Video Content with Text Queries or Video Examples

    Full text link
    The large number of user-generated videos uploaded on to the Internet everyday has led to many commercial video search engines, which mainly rely on text metadata for search. However, metadata is often lacking for user-generated videos, thus these videos are unsearchable by current search engines. Therefore, content-based video retrieval (CBVR) tackles this metadata-scarcity problem by directly analyzing the visual and audio streams of each video. CBVR encompasses multiple research topics, including low-level feature design, feature fusion, semantic detector training and video search/reranking. We present novel strategies in these topics to enhance CBVR in both accuracy and speed under different query inputs, including pure textual queries and query by video examples. Our proposed strategies have been incorporated into our submission for the TRECVID 2014 Multimedia Event Detection evaluation, where our system outperformed other submissions in both text queries and video example queries, thus demonstrating the effectiveness of our proposed approaches

    Adaptive Nonparametric Image Parsing

    Get PDF
    In this paper, we present an adaptive nonparametric solution to the image parsing task, namely annotating each image pixel with its corresponding category label. For a given test image, first, a locality-aware retrieval set is extracted from the training data based on super-pixel matching similarities, which are augmented with feature extraction for better differentiation of local super-pixels. Then, the category of each super-pixel is initialized by the majority vote of the kk-nearest-neighbor super-pixels in the retrieval set. Instead of fixing kk as in traditional non-parametric approaches, here we propose a novel adaptive nonparametric approach which determines the sample-specific k for each test image. In particular, kk is adaptively set to be the number of the fewest nearest super-pixels which the images in the retrieval set can use to get the best category prediction. Finally, the initial super-pixel labels are further refined by contextual smoothing. Extensive experiments on challenging datasets demonstrate the superiority of the new solution over other state-of-the-art nonparametric solutions.Comment: 11 page
    corecore