3,228 research outputs found

    GPU Accelerated Particle Visualization with Splotch

    Get PDF
    Splotch is a rendering algorithm for exploration and visual discovery in particle-based datasets coming from astronomical observations or numerical simulations. The strengths of the approach are production of high quality imagery and support for very large-scale datasets through an effective mix of the OpenMP and MPI parallel programming paradigms. This article reports our experiences in re-designing Splotch for exploiting emerging HPC architectures nowadays increasingly populated with GPUs. A performance model is introduced for data transfers, computations and memory access, to guide our re-factoring of Splotch. A number of parallelization issues are discussed, in particular relating to race conditions and workload balancing, towards achieving optimal performances. Our implementation was accomplished by using the CUDA programming paradigm. Our strategy is founded on novel schemes achieving optimized data organisation and classification of particles. We deploy a reference simulation to present performance results on acceleration gains and scalability. We finally outline our vision for future work developments including possibilities for further optimisations and exploitation of emerging technologies.Comment: 25 pages, 9 figures. Astronomy and Computing (2014

    Reducing redundancy of real time computer graphics in mobile systems

    Get PDF
    The goal of this thesis is to propose novel and effective techniques to eliminate redundant computations that waste energy and are performed in real-time computer graphics applications, with special focus on mobile GPU micro-architecture. Improving the energy-efficiency of CPU/GPU systems is not only key to enlarge their battery life, but also allows to increase their performance because, to avoid overheating above thermal limits, SoCs tend to be throttled when the load is high for a large period of time. Prior studies pointed out that the CPU and especially the GPU are the principal energy consumers in the graphics subsystem, being the off-chip main memory accesses and the processors inside the GPU the primary energy consumers of the graphics subsystem. First, we focus on reducing redundant fragment processing computations by means of improving the culling of hidden surfaces. During real-time graphics rendering, objects are processed by the GPU in the order they are submitted by the CPU, and occluded surfaces are often processed even though they will end up not being part of the final image. When the GPU realizes that an object or part of it is not going to be visible, all activity required to compute its color and store it has already been performed. We propose a novel architectural technique for mobile GPUs, Visibility Rendering Order (VRO), which reorders objects front-to-back entirely in hardware to maximize the culling effectiveness of the GPU and minimize overshading, hence reducing execution time and energy consumption. VRO exploits the fact that the objects in graphics animated applications tend to keep its relative depth order across consecutive frames (temporal coherence) to provide the feeling of smooth transition. VRO keeps visibility information of a frame, and uses it to reorder the objects of the following frame. VRO just requires adding a small hardware to capture the visibility information and use it later to guide the rendering of the following frame. Moreover, VRO works in parallel with the graphics pipeline, so negligible performance overheads are incurred. We illustrate the benefits of VRO using various unmodified commercial 3D applications for which VRO achieves 27% speed-up and 14.8% energy reduction on average. Then, we focus on avoiding redundant computations related to CPU Collision Detection (CD). Graphics applications such as 3D games represent a large percentage of downloaded applications for mobile devices and the trend is towards more complex and realistic scenes with accurate 3D physics simulations. CD is one of the most important algorithms in any physics kernel since it identifies the contact points between the objects of a scene and determines when they collide. However, real-time accurate CD is very expensive in terms of energy consumption. We propose Render Based Collision Detection (RBCD), a novel energy-efficient high-fidelity CD scheme that leverages some intermediate results of the rendering pipeline to perform CD, so that redundant tasks are done just once. Comparing RBCD with a conventional CD completely executed in the CPU, we show that its execution time is reduced by almost three orders of magnitude (600x speedup), because most of the CD task of our model comes for free by reusing the image rendering intermediate results. Although not necessarily, such a dramatic time improvement may result in better frames per second if physics simulation stays in the critical path. However, the most important advantage of our technique is the enormous energy savings that result from eliminating a long and costly CPU computation and converting it into a few simple operations executed by a specialized hardware within the GPU. Our results show that the energy consumed by CD is reduced on average by a factor of 448x (i.e., by 99.8\%). These dramatic benefits are accompanied by a higher fidelity CD analysis (i.e., with finer granularity), which improves the quality and realism of the application.El objetivo de esta tesis es proponer técnicas efectivas y originales para eliminar computaciones inútiles que aparecen en aplicaciones gráficas, con especial énfasis en micro-arquitectura de GPUs. Mejorar la eficiencia energética de los sistemas CPU/GPU no es solo clave para alargar la vida de la batería, sino también incrementar su rendimiento. Estudios previos han apuntado que la CPU y especialmente la GPU son los principales consumidores de energía en el sub-sistema gráfico, siendo los accesos a memoria off-chip y los procesadores dentro de la GPU los principales consumidores de energía del sub-sistema gráfico. Primero, nos hemos centrado en reducir computaciones redundantes de la fase de fragment processing mediante la mejora en la eliminación de superficies ocultas. Durante el renderizado de gráficos en tiempo real, los objetos son procesados por la GPU en el orden en el que son enviados por la CPU, y las superficies ocultas son a menudo procesadas incluso si no no acaban formando parte de la imagen final. Cuando la GPU averigua que el objeto o parte de él no es visible, toda la actividad requerida para computar su color y guardarlo ha sido realizada. Proponemos una técnica arquitectónica original para GPUs móviles, Visibility Rendering Order (VRO), la cual reordena los objetos de delante hacia atrás por completo en hardware para maximizar la efectividad del culling de la GPU y así minimizar el overshading, y por lo tanto reducir el tiempo de ejecución y el consumo de energía. VRO explota el hecho de que los objetos de las aplicaciones gráficas animadas tienden a mantener su orden relativo en profundidad a través de frames consecutivos (coherencia temporal) para proveer animaciones con transiciones suaves. Dado que las relaciones de orden en profundidad entre objetos son testeadas en la GPU, VRO introduce costes mínimos en energía. Solo requiere añadir una pequeña unidad hardware para capturar la información de visibilidad. Además, VRO trabaja en paralelo con el pipeline gráfico, por lo que introduce costes insignificantes en tiempo. Ilustramos los beneficios de VRO usango varias aplicaciones 3D comerciales para las cuales VRO consigue un 27% de speed-up y un 14.8% de reducción de energía en media. En segundo lugar, evitamos computaciones redundantes relacionadas con la Detección de Colisiones (CD) en la CPU. Las aplicaciones gráficas animadas como los juegos 3D representan un alto porcentaje de las aplicaciones descargadas en dispositivos móviles y la tendencia es hacia escenas más complejas y realistas con simulaciones físicas 3D precisas. La CD es uno de los algoritmos más importantes entre los kernel de físicas dado que identifica los puntos de contacto entre los objetos de una escena. Sin embargo, una CD en tiempo real y precisa es muy costosa en términos de consumo energético. Proponemos Render Based Collision Detection (RBCD), una técnica energéticamente eficiente y preciso de CD que utiliza resultados intermedios del rendering pipeline para realizar la CD. Comparando RBCD con una CD convencional completamente ejecutada en la CPU, mostramos que el tiempo de ejecución es reducido casi tres órdenes de magnitud (600x speedup), porque la mayoría de la CD de nuestro modelo reusa resultados intermedios del renderizado de la imagen. Aunque no es así necesariamente, esta espectacular en tiempo puede resultar en mejores frames por segundo si la simulación de físicas está en el camino crítico. Sin embargo, la ventaja más importante de nuestra técnica es el enorme ahorro de energía que resulta de eliminar las largas y costosas computaciones en la CPU, sustituyéndolas por unas pocas operaciones ejecutadas en un hardware especializado dentro de la GPU. Nuestros resultados muestran que la energía consumida por la CD es reducidad en media por un factor de 448x. Estos dramáticos beneficios vienen acompañados de una mayor fidelidad en la CD (i.e. con granularidad más fina)Postprint (published version

    GRAAL: A Framework for Low-Power 3D Graphics Accelerators

    Full text link

    Memory sharing for interactive ray tracing on clusters

    Get PDF
    ManuscriptWe present recent results in the application of distributed shared memory to image parallel ray tracing on clusters. Image parallel rendering is traditionally limited to scenes that are small enough to be replicated in the memory of each node, because any processor may require access to any piece of the scene. We solve this problem by making all of a cluster's memory available through software distributed shared memory layers. With gigabit ethernet connections, this mechanism is sufficiently fast for interactive rendering of multi-gigabyte datasets. Object- and page-based distributed shared memories are compared, and optimizations for efficient memory use are discussed

    Synchronized-tracing of implicit surfaces

    Full text link
    Implicit surfaces are known for their ability to represent smooth objects of arbitrary topology thanks to hierarchical combinations of primitives using a structure called a blobtree. We present a new tile-based rendering pipeline well suited for modeling scenarios, i.e., no preprocessing is required when primitive parameters are updated. When using approximate signed distance fields, we rely on compact, smooth CSG operators - extended from standard bounded operators - to compute a tight volume of interest for all primitives of the blobtree. The pipeline relies on a low-resolution A-buffer storing the primitives of interest of a given screen tile. The A-buffer is then used during ray processing to synchronize threads within a subfrustum. This allows coherent field evaluation within workgroups. We use a sparse bottom-up tree traversal to prune the blobtree on-the-fly which allows us to decorrelate field evaluation complexity from the full blobtree size. The ray processing itself is done using the sphere-tracing algorithm. The pipeline scales well to surfaces consisting of thousands of primitives

    TCOR: a tile cache with optimal replacement

    Get PDF
    Cache Replacement Policies are known to have an important impact on hit rates. The OPT replacement policy [27] has been formally proven as optimal for minimizing misses. Due to its need to look far ahead for future memory accesses, it is often reduced to a yardstick for measuring the efficacy of other practical caches. In this paper, we bring the OPT to life, in architectures for mobile GPUs, for which energy efficiency is of great consequence. We also mold other factors in the memory hierarchy to enhance its impact. The end results are a 13.8% decrease in the memory hierarchy energy consumption and an increased throughput in the Tiling Engine. We also observe a 5.5% decrease in the total GPU energy and a 3.7% increase in frames per second (FPS).This work has been supported by the CoCoUnit ERC Advanced Grant of the EU’s Horizon 2020 program (grant No 833057), the Spanish State Research Agency (MCIN/AEI) under grant PID2020-113172RB-I00, the ICREA Academia program and the AGAUR grant 2020-FISDU-00287. We would also like to thank the anonymous reviewers for their valuable comments.Peer ReviewedPostprint (author's final draft

    3D Gaussian Splatting for Real-Time Radiance Field Rendering

    Full text link
    Radiance Field methods have recently revolutionized novel-view synthesis of scenes captured with multiple photos or videos. However, achieving high visual quality still requires neural networks that are costly to train and render, while recent faster methods inevitably trade off speed for quality. For unbounded and complete scenes (rather than isolated objects) and 1080p resolution rendering, no current method can achieve real-time display rates. We introduce three key elements that allow us to achieve state-of-the-art visual quality while maintaining competitive training times and importantly allow high-quality real-time (>= 30 fps) novel-view synthesis at 1080p resolution. First, starting from sparse points produced during camera calibration, we represent the scene with 3D Gaussians that preserve desirable properties of continuous volumetric radiance fields for scene optimization while avoiding unnecessary computation in empty space; Second, we perform interleaved optimization/density control of the 3D Gaussians, notably optimizing anisotropic covariance to achieve an accurate representation of the scene; Third, we develop a fast visibility-aware rendering algorithm that supports anisotropic splatting and both accelerates training and allows realtime rendering. We demonstrate state-of-the-art visual quality and real-time rendering on several established datasets.Comment: https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting
    corecore