9,927 research outputs found

    Scene Graph Generation by Iterative Message Passing

    Full text link
    Understanding a visual scene goes beyond recognizing individual objects in isolation. Relationships between objects also constitute rich semantic information about the scene. In this work, we explicitly model the objects and their relationships using scene graphs, a visually-grounded graphical structure of an image. We propose a novel end-to-end model that generates such structured scene representation from an input image. The model solves the scene graph inference problem using standard RNNs and learns to iteratively improves its predictions via message passing. Our joint inference model can take advantage of contextual cues to make better predictions on objects and their relationships. The experiments show that our model significantly outperforms previous methods for generating scene graphs using Visual Genome dataset and inferring support relations with NYU Depth v2 dataset.Comment: CVPR 201

    Weakly Supervised Visual Semantic Parsing

    Full text link
    Scene Graph Generation (SGG) aims to extract entities, predicates and their semantic structure from images, enabling deep understanding of visual content, with many applications such as visual reasoning and image retrieval. Nevertheless, existing SGG methods require millions of manually annotated bounding boxes for training, and are computationally inefficient, as they exhaustively process all pairs of object proposals to detect predicates. In this paper, we address those two limitations by first proposing a generalized formulation of SGG, namely Visual Semantic Parsing, which disentangles entity and predicate recognition, and enables sub-quadratic performance. Then we propose the Visual Semantic Parsing Network, VSPNet, based on a dynamic, attention-based, bipartite message passing framework that jointly infers graph nodes and edges through an iterative process. Additionally, we propose the first graph-based weakly supervised learning framework, based on a novel graph alignment algorithm, which enables training without bounding box annotations. Through extensive experiments, we show that VSPNet outperforms weakly supervised baselines significantly and approaches fully supervised performance, while being several times faster. We publicly release the source code of our method.Comment: To be presented at CVPR 2020 (oral paper

    Target-Tailored Source-Transformation for Scene Graph Generation

    Get PDF
    Scene graph generation aims to provide a semantic and structural description of an image, denoting the objects (with nodes) and their relationships (with edges). The best performing works to date are based on exploiting the context surrounding objects or relations,e.g., by passing information among objects. In these approaches, to transform the representation of source objects is a critical process for extracting information for the use by target objects. In this work, we argue that a source object should give what tar-get object needs and give different objects different information rather than contributing common information to all targets. To achieve this goal, we propose a Target-TailoredSource-Transformation (TTST) method to efficiently propagate information among object proposals and relations. Particularly, for a source object proposal which will contribute information to other target objects, we transform the source object feature to the target object feature domain by simultaneously taking both the source and target into account. We further explore more powerful representations by integrating language prior with the visual context in the transformation for the scene graph generation. By doing so the target object is able to extract target-specific information from the source object and source relation accordingly to refine its representation. Our framework is validated on the Visual Genome bench-mark and demonstrated its state-of-the-art performance for the scene graph generation. The experimental results show that the performance of object detection and visual relation-ship detection are promoted mutually by our method
    • …
    corecore