2 research outputs found

    Hazard assessment modeling and software development of earthquake-triggered landslides in the Sichuan–Yunnan area, China

    Get PDF
    To enhance the timeliness and accuracy of spatial prediction of coseismic landslides, we propose an improved three-stage spatial prediction strategy and develop corresponding hazard assessment software named Mat.LShazard V1.0. Based on this software, we evaluate the applicability of this improved spatial prediction strategy in six earthquake events that have occurred near the Sichuan–Yunnan region, including the Wenchuan, Ludian, Lushan, Jiuzhaigou, Minxian, and Yushu earthquakes. The results indicate that in the first stage (immediately after the quake event), except for the 2013 Minxian earthquake, the area under the curve (AUC) values of the modeling performance are above 0.8. Among them, the AUC value of the Wenchuan earthquake is the highest, reaching 0.947. The prediction results in the first stage can meet the requirements of emergency rescue by immediately obtaining the overall predicted information of the possible coseismic landslide locations in the quake-affected area. In the second and third stages, with the improvement of landslide data quality, the prediction ability of the model based on the entire landslide database is gradually improved. Based on the entire landslide database, the AUC value of the six events exceeds 0.9, indicating a very high prediction accuracy. For the second and third stages, the predicted landslide area (Ap) is relatively consistent with the observed landslide area (Ao). However, based on the incomplete landslide data in the meizoseismal area, Ap is much smaller than Ao. When the prediction model based on complete landslide data is built, Ap is nearly identical to Ao. This study provides a new application tool for coseismic landslide disaster prevention and mitigation in different stages of emergency rescue, temporary resettlement, and late reconstruction after a major earthquake.</p

    Scenario-Based Risk Assessment of Earthquake Disaster Using Slope Displacement, PGA, and Population Density in the Guyuan Region, China

    No full text
    Mega-earthquakes that occur in mountainous areas of densely populated cities are particularly catastrophic, triggering large landslides, destroying more buildings, and usually resulting in significant death tolls. In this paper, earthquake scenarios in the Guyuan Region of China are used as an example to study earthquake disaster risk assessment and a method of assessment is proposed that uses the peak ground acceleration (PGA), landslides triggered by the earthquake, and the effects on the population. The method is used to develop scenarios for earthquake disaster risk assessment along the Haiyuan and Liupanshan Faults for earthquake magnitudes of Ms 7.0, 7.5, 8.0, and 8.5 triggered by one of the two faults. The quantitative earthquake disaster risk maps in the study area were developed by integrating the values of the at-risk elements for the earthquake factor, population, and landslide hazard. According to the model results, the high-hazard zone was mainly located in the severely affected areas along the faults and on the western side of the faults. These results can be useful for emergency preparation planning, response plans, and resource assessment
    corecore