2 research outputs found

    Coastal Aquaculture Extraction Using GF-3 Fully Polarimetric SAR Imagery: A Framework Integrating UNet++ with Marker-Controlled Watershed Segmentation

    Get PDF
    Coastal aquaculture monitoring is vital for sustainable offshore aquaculture management. However, the dense distribution and various sizes of aquacultures make it challenging to accurately extract the boundaries of aquaculture ponds. In this study, we develop a novel combined framework that integrates UNet++ with a marker-controlled watershed segmentation strategy to facilitate aquaculture boundary extraction from fully polarimetric GaoFen-3 SAR imagery. First, four polarimetric decomposition algorithms were applied to extract 13 polarimetric scattering features. Together with the nine other polarisation and texture features, a total of 22 polarimetric features were then extracted, among which four were optimised according to the separability index. Subsequently, to reduce the “adhesion” phenomenon and separate adjacent and even adhering ponds into individual aquaculture units, two UNet++ subnetworks were utilised to construct the marker and foreground functions, the results of which were then used in the marker-controlled watershed algorithm to obtain refined aquaculture results. A multiclass segmentation strategy that divides the intermediate markers into three categories (aquaculture, background and dikes) was applied to the marker function. In addition, a boundary patch refinement postprocessing strategy was applied to the two subnetworks to extract and repair the complex/error-prone boundaries of the aquaculture ponds, followed by a morphological operation that was conducted for label augmentation. An experimental investigation performed to extract individual aquacultures in the Yancheng Coastal Wetlands indicated that the crucial features for aquacultures are Shannon entropy (SE), the intensity component of SE (SE_I) and the corresponding mean texture features (Mean_SE and Mean_SE_I). When the optimal features were introduced, our proposed method performed better than standard UNet++ in aquaculture extraction, achieving improvements of 1.8%, 3.2%, 21.7% and 12.1% in F1, IoU, MR and insF1, respectively. The experimental results indicate that the proposed method can handle the adhesion of both adjacent objects and unclear boundaries effectively and capture clear and refined aquaculture boundaries

    Scattering Feature Set Optimization and Polarimetric SAR Classification Using Object-Oriented RF-SFS Algorithm in Coastal Wetlands

    No full text
    The utilization of advanced remote sensing methods to monitor the coastal wetlands is essential for conservation and sustainable development. With multiple polarimetric channels, the polarimetric synthetic aperture radar (PolSAR) is increasingly employed in land cover classification and information extraction, as it has more scattering information than regular SAR images. Polarimetric decomposition is often used to extract scattering information from polarimetric SAR. However, distinguishing all land cover types using only one polarimetric decomposition in complex ecological environments such as coastal wetlands is not easy, and thus integration of multiple decomposition algorithms is an effective means of land cover classification. More than 20 decompositions were used in this research to extract polarimetric scattering features. Furthermore, a new algorithm combining random forest (RF) with sequential forward selection (SFS) was applied, in which the importance values of all polarimetric features can be evaluated quantitatively, and the polarimetric feature set can be optimized. The experiments were conducted in the Jiangsu coastal wetlands, which are located in eastern China. This research demonstrated that the classification accuracies were improved relative to regular decision tree methods, and the process of polarimetric scattering feature set optimization was intuitive. Furthermore, the scattering matrix elements and scattering features derived from H / α , Yamaguchi3, VanZyl3, and Krogager decompositions were determined to be very supportive of land cover identification in the Jiangsu coastal wetlands
    corecore