7,744 research outputs found

    GMLS-Nets: A framework for learning from unstructured data

    Full text link
    Data fields sampled on irregularly spaced points arise in many applications in the sciences and engineering. For regular grids, Convolutional Neural Networks (CNNs) have been successfully used to gaining benefits from weight sharing and invariances. We generalize CNNs by introducing methods for data on unstructured point clouds based on Generalized Moving Least Squares (GMLS). GMLS is a non-parametric technique for estimating linear bounded functionals from scattered data, and has recently been used in the literature for solving partial differential equations. By parameterizing the GMLS estimator, we obtain learning methods for operators with unstructured stencils. In GMLS-Nets the necessary calculations are local, readily parallelizable, and the estimator is supported by a rigorous approximation theory. We show how the framework may be used for unstructured physical data sets to perform functional regression to identify associated differential operators and to regress quantities of interest. The results suggest the architectures to be an attractive foundation for data-driven model development in scientific machine learning applications

    Compactly supported radial basis functions: How and why?

    Get PDF
    Compactly supported basis functions are widely required and used in many applications. We explain why radial basis functions are preferred to multi-variate polynomials for scattered data approximation in high-dimensional space and give a brief description on how to construct the most commonly used compactly supported radial basis functions - the Wendland functions and the new found missing Wendland functions. One can construct a compactly supported radial basis function with required smoothness according to the procedure described here without sophisticated mathematics. Very short programs and extended tables for compactly supported radial basis functions are supplied
    • …
    corecore