266,690 research outputs found

    ScarGAN: Chained Generative Adversarial Networks to Simulate Pathological Tissue on Cardiovascular MR Scans

    Get PDF
    Medical images with specific pathologies are scarce, but a large amount of data is usually required for a deep convolutional neural network (DCNN) to achieve good accuracy. We consider the problem of segmenting the left ventricular (LV) myocardium on late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) scans of which only some of the scans have scar tissue. We propose ScarGAN to simulate scar tissue on healthy myocardium using chained generative adversarial networks (GAN). Our novel approach factorizes the simulation process into 3 steps: 1) a mask generator to simulate the shape of the scar tissue; 2) a domain-specific heuristic to produce the initial simulated scar tissue from the simulated shape; 3) a refining generator to add details to the simulated scar tissue. Unlike other approaches that generate samples from scratch, we simulate scar tissue on normal scans resulting in highly realistic samples. We show that experienced radiologists are unable to distinguish between real and simulated scar tissue. Training a U-Net with additional scans with scar tissue simulated by ScarGAN increases the percentage of scar pixels correctly included in LV myocardium prediction from 75.9% to 80.5%.Comment: 12 pages, 5 figures. To appear in MICCAI DLMIA 201

    Variation in the impact of stem scar and cuticle on water loss in highbush blueberry fruit argue for the use of water permeance as a selection criterion in breeding

    Get PDF
    The role of fruit scar on water loss from fresh harvested, fully blue highbush blueberry (Vaccinium corymbosum L.) fruit was studied on three germplasm lines from each of three half-sib families at University of Talca, Chile. The stem scar of half of the harvested fruit was sealed using nail polish and weight loss of sealed and non-sealed fruit determined daily at 20 °C (5 d storage) and bi-weekly at 0 °C (15 d storage). Fruit firmness was determined at the end of the storage period. The stem scar accounted for approximately 40% of the moisture lost at 20 °C, but percentages varied considerably between lines. While the stem scar covered 0.19% to 0.74% of the fruit surface area, its rate of transpiration was 170-times higher than for the cuticle at 20 °C. The larger the fruit scar area, the greater was the absolute rate of water loss, but scar size scar did not affect the rate of weight loss expressed on a per gram fruit basis. Higher levels of water loss were associated with a greater loss in firmness; fruit having a large scar had a greater rate of water loss and were less firm than those having medium or small scars. The water permeance of the fruit cuticle varied two-fold and the apparent permeance of the scar varied three-fold among the 9 lines evaluated when held at 20 °C. Interestingly, one line exhibited a 75% lower rate of water loss from its stem scar than the other lines than would be predicted based on its scar diameter. Storage at 0 °C reduced the rate of water loss by 90% but the cuticle permeance was not affected by temperature. Sealing the stem scar increased fruit firmness retention at 0 °C and 20 °C, but provided less benefit at 0 °C vs. 20 °C. The highly variable nature of water loss through the stem scar and the cuticle in this study suggests that large gains in reductions in water loss are possible for the highbush blueberry once the mechanisms for transpiration are better understood.In Chile, this work was supported by the National Commission for Scientific and Technological ResearchCONICYT (FONDECYT11130539) and the Universidad de Talca (research programs “Adaptation of Agriculture to Climate Change (A2C2)”, “Fondo Proyectos de Investigación” and “Núcleo Científico Multidisciplinario”). In the United States this work was partially supported by the “2015 Fulbright Specialist Program”, Project 6365. In Spain this work was partially supported by “Fundación Carolina” and “Programa de Doctorado en Ciencia y Tecnología Agraria y Alimentaria”, Universitat de Lleida

    Exact Quantum Many-Body Scar States in the Rydberg-Blockaded Atom Chain

    Get PDF
    A recent experiment in the Rydberg atom chain observed unusual oscillatory quench dynamics with a charge density wave initial state, and theoretical works identified a set of many-body "scar states" showing nonthermal behavior in the Hamiltonian as potentially responsible for the atypical dynamics. In the same nonintegrable Hamiltonian, we discover several eigenstates at \emph{infinite temperature} that can be represented exactly as matrix product states with finite bond dimension, for both periodic boundary conditions (two exact E=0E = 0 states) and open boundary conditions (two E=0E = 0 states and one each E=±2E = \pm \sqrt{2}). This discovery explicitly demonstrates violation of strong eigenstate thermalization hypothesis in this model and uncovers exact quantum many-body scar states. These states show signatures of translational symmetry breaking with period-2 bond-centered pattern, despite being in one dimension at infinite temperature. We show that the nearby many-body scar states can be well approximated as "quasiparticle excitations" on top of our exact E=0E = 0 scar states, and propose a quasiparticle explanation of the strong oscillations observed in experiments.Comment: Published version. In addition to (v2): (1) Add additional proofs to the exact scar states and intuitions behind SMA and MMA to the appendices. (2) Add entanglement scaling of SMA and MMA to the appendice

    Detection of myocardial scar from the VCG using a supervised learning approach

    No full text
    This paper addresses the possibility of detecting presence of scar tissue in the myocardium through the in- vestigation of vectorcardiogram (VCG) characteristics. Scarred myocardium is the result of myocardial infarction (MI) due to ischemia and creates a substrate for the manifestation of fatal arrhythmias. Our efforts are focused on the development of a classification scheme for the early screening of patients for the presence of scar. More specifically, a supervised learning model based on the extracted VCG features is proposed and validated through comprehensive testing analysis. The achieved accuracy of 82.36% (sensitivity 84.31%, specificity 77.36%) indicates the potential of the proposed screening mechanism for detecting the presence/absence of scar tissue

    scar

    Get PDF

    Eta-pairing states as true scars in an extended Hubbard Model

    Get PDF
    The eta-pairing states are a set of exactly known eigenstates of the Hubbard model on hypercubic lattices, first discovered by Yang [Phys. Rev. Lett. 63, 2144 (1989)]. These states are not many-body scar states in the Hubbard model because they occupy unique symmetry sectors defined by the so-called "eta-pairing SU(2)" symmetry. We study an extended Hubbard model with bond-charge interactions, popularized by Hirsch [Physica C 158, 326 (1989)], where the eta-pairing states survive without the eta-pairing symmetry and become true scar states. We also discuss similarities between the eta-pairing states and exact scar towers in the spin-1 XY model found by Schecter and Iadecola [Phys. Rev. Lett. 123, 147201 (2019)], and systematically arrive at all nearest-neighbor terms that preserve such scar towers in 1D. We also generalize these terms to arbitrary bipartite lattices. Our study of the spin-1 XY model also leads us to several new scarred models, including a spin-1/2 J1J2J_1-J_2 model with Dzyaloshinkskii-Moriya interaction, in realistic quantum magnet settings in 1D and 2D.Comment: 19 pages, 1 figure. v2 updates references and adds new Appendices. The new Appendix D discusses new spin models with scar tower
    corecore