4 research outputs found

    Scan Based Side Channel Attack on Data Encryption Standard

    Get PDF
    Scan based test is a double edged sword. On one hand, it is a powerful test technique. On the other hand, it is an equally powerful attack tool. In this paper we show that scan chains can be used as a side channel to recover secret keys from a hardware implementation of the Data Encryption Standard (DES). By loading pairs of known plaintexts with one-bit difference in the normal mode and then scanning out the internal state in the test mode, we first determine the position of all scan elements in the scan chain. Then, based on a systematic analysis of the structure of the non-linear substitution boxes, and using three additional plaintexts we discover the DES secret key. Finally, some assumptions in the attack are discussed

    Secure pseudo-random linear binary sequences generators based on arithmetic polynoms

    Full text link
    We present a new approach to constructing of pseudo-random binary sequences (PRS) generators for the purpose of cryptographic data protection, secured from the perpetrator's attacks, caused by generation of masses of hardware errors and faults. The new method is based on use of linear polynomial arithmetic for the realization of systems of boolean characteristic functions of PRS' generators. "Arithmetizatio" of systems of logic formulas has allowed to apply mathematical apparatus of residue systems for multisequencing of the process of PRS generation and organizing control of computing errors, caused by hardware faults. This has guaranteed high security of PRS generator's functioning and, consequently, security of tools for cryptographic data protection based on those PRSs

    Scan based side channel attack on data encryption standard, Cryptology ePrint Archive, Report 2004/083, 2004, http://eprint.iacr.org/2004/083/. [ZCM + 96

    No full text
    Scan based test is a double edged sword. On one hand, it is a powerful test technique. On the other hand, it is an equally powerful attack tool. In this paper we show that scan chains can be used as a side channel to recover secret keys from a hardware implementation of the Data Encryption Standard (DES). By loading pairs of known plaintexts with one-bit difference in the normal mode and then scanning out the internal state in the test mode, we first determine the position of all scan elements in the scan chain. Then, based on a systematic analysis of the structure of the non-linear substitution boxes, and using three additional plaintexts we discover the DES secret key. Finally, some assumptions in the attack are discussed. 1
    corecore