30,108 research outputs found

    Fixed-point Factorized Networks

    Full text link
    In recent years, Deep Neural Networks (DNN) based methods have achieved remarkable performance in a wide range of tasks and have been among the most powerful and widely used techniques in computer vision. However, DNN-based methods are both computational-intensive and resource-consuming, which hinders the application of these methods on embedded systems like smart phones. To alleviate this problem, we introduce a novel Fixed-point Factorized Networks (FFN) for pretrained models to reduce the computational complexity as well as the storage requirement of networks. The resulting networks have only weights of -1, 0 and 1, which significantly eliminates the most resource-consuming multiply-accumulate operations (MACs). Extensive experiments on large-scale ImageNet classification task show the proposed FFN only requires one-thousandth of multiply operations with comparable accuracy

    ReBNet: Residual Binarized Neural Network

    Full text link
    This paper proposes ReBNet, an end-to-end framework for training reconfigurable binary neural networks on software and developing efficient accelerators for execution on FPGA. Binary neural networks offer an intriguing opportunity for deploying large-scale deep learning models on resource-constrained devices. Binarization reduces the memory footprint and replaces the power-hungry matrix-multiplication with light-weight XnorPopcount operations. However, binary networks suffer from a degraded accuracy compared to their fixed-point counterparts. We show that the state-of-the-art methods for optimizing binary networks accuracy, significantly increase the implementation cost and complexity. To compensate for the degraded accuracy while adhering to the simplicity of binary networks, we devise the first reconfigurable scheme that can adjust the classification accuracy based on the application. Our proposition improves the classification accuracy by representing features with multiple levels of residual binarization. Unlike previous methods, our approach does not exacerbate the area cost of the hardware accelerator. Instead, it provides a tradeoff between throughput and accuracy while the area overhead of multi-level binarization is negligible.Comment: To Appear In The 26th IEEE International Symposium on Field-Programmable Custom Computing Machine
    • …
    corecore