38,471 research outputs found

    DIMAL: Deep Isometric Manifold Learning Using Sparse Geodesic Sampling

    Full text link
    This paper explores a fully unsupervised deep learning approach for computing distance-preserving maps that generate low-dimensional embeddings for a certain class of manifolds. We use the Siamese configuration to train a neural network to solve the problem of least squares multidimensional scaling for generating maps that approximately preserve geodesic distances. By training with only a few landmarks, we show a significantly improved local and nonlocal generalization of the isometric mapping as compared to analogous non-parametric counterparts. Importantly, the combination of a deep-learning framework with a multidimensional scaling objective enables a numerical analysis of network architectures to aid in understanding their representation power. This provides a geometric perspective to the generalizability of deep learning.Comment: 10 pages, 11 Figure

    Effect of Super Resolution on High Dimensional Features for Unsupervised Face Recognition in the Wild

    Full text link
    Majority of the face recognition algorithms use query faces captured from uncontrolled, in the wild, environment. Often caused by the cameras limited capabilities, it is common for these captured facial images to be blurred or low resolution. Super resolution algorithms are therefore crucial in improving the resolution of such images especially when the image size is small requiring enlargement. This paper aims to demonstrate the effect of one of the state-of-the-art algorithms in the field of image super resolution. To demonstrate the functionality of the algorithm, various before and after 3D face alignment cases are provided using the images from the Labeled Faces in the Wild (lfw). Resulting images are subject to testing on a closed set face recognition protocol using unsupervised algorithms with high dimension extracted features. The inclusion of super resolution algorithm resulted in significant improved recognition rate over recently reported results obtained from unsupervised algorithms

    Highly Efficient Regression for Scalable Person Re-Identification

    Full text link
    Existing person re-identification models are poor for scaling up to large data required in real-world applications due to: (1) Complexity: They employ complex models for optimal performance resulting in high computational cost for training at a large scale; (2) Inadaptability: Once trained, they are unsuitable for incremental update to incorporate any new data available. This work proposes a truly scalable solution to re-id by addressing both problems. Specifically, a Highly Efficient Regression (HER) model is formulated by embedding the Fisher's criterion to a ridge regression model for very fast re-id model learning with scalable memory/storage usage. Importantly, this new HER model supports faster than real-time incremental model updates therefore making real-time active learning feasible in re-id with human-in-the-loop. Extensive experiments show that such a simple and fast model not only outperforms notably the state-of-the-art re-id methods, but also is more scalable to large data with additional benefits to active learning for reducing human labelling effort in re-id deployment

    Masking Strategies for Image Manifolds

    Full text link
    We consider the problem of selecting an optimal mask for an image manifold, i.e., choosing a subset of the pixels of the image that preserves the manifold's geometric structure present in the original data. Such masking implements a form of compressive sensing through emerging imaging sensor platforms for which the power expense grows with the number of pixels acquired. Our goal is for the manifold learned from masked images to resemble its full image counterpart as closely as possible. More precisely, we show that one can indeed accurately learn an image manifold without having to consider a large majority of the image pixels. In doing so, we consider two masking methods that preserve the local and global geometric structure of the manifold, respectively. In each case, the process of finding the optimal masking pattern can be cast as a binary integer program, which is computationally expensive but can be approximated by a fast greedy algorithm. Numerical experiments show that the relevant manifold structure is preserved through the data-dependent masking process, even for modest mask sizes
    • …
    corecore