23 research outputs found

    Static and Dynamic Scheduling for Effective Use of Multicore Systems

    Get PDF
    Multicore systems have increasingly gained importance in high performance computers. Compared to the traditional microarchitectures, multicore architectures have a simpler design, higher performance-to-area ratio, and improved power efficiency. Although the multicore architecture has various advantages, traditional parallel programming techniques do not apply to the new architecture efficiently. This dissertation addresses how to determine optimized thread schedules to improve data reuse on shared-memory multicore systems and how to seek a scalable solution to designing parallel software on both shared-memory and distributed-memory multicore systems. We propose an analytical cache model to predict the number of cache misses on the time-sharing L2 cache on a multicore processor. The model provides an insight into the impact of cache sharing and cache contention between threads. Inspired by the model, we build the framework of affinity based thread scheduling to determine optimized thread schedules to improve data reuse on all the levels in a complex memory hierarchy. The affinity based thread scheduling framework includes a model to estimate the cost of a thread schedule, which consists of three submodels: an affinity graph submodel, a memory hierarchy submodel, and a cost submodel. Based on the model, we design a hierarchical graph partitioning algorithm to determine near-optimal solutions. We have also extended the algorithm to support threads with data dependences. The algorithms are implemented and incorporated into a feedback directed optimization prototype system. The prototype system builds upon a binary instrumentation tool and can improve program performance greatly on shared-memory multicore architectures. We also study the dynamic data-availability driven scheduling approach to designing new parallel software on distributed-memory multicore architectures. We have implemented a decentralized dynamic runtime system. The design of the runtime system is focused on the scalability metric. At any time only a small portion of a task graph exists in memory. We propose an algorithm to solve data dependences without process cooperation in a distributed manner. Our experimental results demonstrate the scalability and practicality of the approach for both shared-memory and distributed-memory multicore systems. Finally, we present a scalable nonblocking topology-aware multicast scheme for distributed DAG scheduling applications

    Task-based Runtime Optimizations Towards High Performance Computing Applications

    Get PDF
    The last decades have witnessed a rapid improvement of computational capabilities in high-performance computing (HPC) platforms thanks to hardware technology scaling. HPC architectures benefit from mainstream advances on the hardware with many-core systems, deep hierarchical memory subsystem, non-uniform memory access, and an ever-increasing gap between computational power and memory bandwidth. This has necessitated continuous adaptations across the software stack to maintain high hardware utilization. In this HPC landscape of potentially million-way parallelism, task-based programming models associated with dynamic runtime systems are becoming more popular, which fosters developers’ productivity at extreme scale by abstracting the underlying hardware complexity. In this context, this dissertation highlights how a software bundle powered by a task-based programming model can address the heterogeneous workloads engendered by HPC applications., i.e., data redistribution, geospatial modeling and 3D unstructured mesh deformation here. Data redistribution aims to reshuffle data to optimize some objective for an algorithm, whose objective can be multi-dimensional, such as improving computational load balance or decreasing communication volume or cost, with the ultimate goal of increasing the efficiency and therefore reducing the time-to-solution for the algorithm. Geostatistical modeling, one of the prime motivating applications for exascale computing, is a technique for predicting desired quantities from geographically distributed data, based on statistical models and optimization of parameters. Meshing the deformable contour of moving 3D bodies is an expensive operation that can cause huge computational challenges in fluid-structure interaction (FSI) applications. Therefore, in this dissertation, Redistribute-PaRSEC, ExaGeoStat-PaRSEC and HiCMA-PaRSEC are proposed to efficiently tackle these HPC applications respectively at extreme scale, and they are evaluated on multiple HPC clusters, including AMD-based, Intel-based, Arm-based CPU systems and IBM-based multi-GPU system. This multidisciplinary work emphasizes the need for runtime systems to go beyond their primary responsibility of task scheduling on massively parallel hardware system for servicing the next-generation scientific applications

    Analysis and Design of Communication Avoiding Algorithms for Out of Memory(OOM) SVD

    Get PDF
    Many applications — including big data analytics, information retrieval, gene expression analysis, and numerical weather prediction – require the solution of large, dense singular value decomposition (SVD). The size of matrices used in many of these applications is becoming too large to fit into into a computer’s main memory at one time, and the traditional SVD algorithms that require all the matrix components to be loaded into memory before computation starts cannot be used directly. Moving data (communication) between levels of memory hierarchy and the disk exposes extra challenges to design SVD for such big matrices because of the exponential growth in the gap between floating-point arithmetic rate and bandwidth for many different storage devices on modern high performance computers. In this dissertation, we have analyzed communication overhead on hierarchical memory systems and disks for SVD algorithms and designed communication-avoiding (CA) Out of Memory (OOM) SVD algorithms. By Out of Memory we mean that the matrix is too big to fit in the main memory and therefore must reside in external or internal storage. We have studied communication overhead for classical one-stage blocked SVD and two-stage tiled SVD algorithms and proposed our OOM SVD algorithm, which reduces the communication cost. We have presented theoretical analysis and strategies to design CA OOM SVD algorithms, developed optimized implementation of CA OOM SVD for multicore architecture, and presented its performance results. When matrices are tall, performance of OOM SVD can be improved significantly by carrying out QR decomposition on the original matrix in the first place. The upper triangular matrix generated by QR decomposition may fit in the main memory, and in-core SVD can be used efficiently. Even if the upper triangular matrix does not fit in the main memory, OOM SVD will work on a smaller matrix. That is why we have analyzed communication reduction for OOM QR algorithm, implemented optimized OOM tiled QR for multicore systems and showed performance improvement of OOM SVD algorithms for tall matrices

    Composing resilience techniques: ABFT, periodic and incremental checkpointing

    Full text link

    Composing resilience techniques: ABFT, periodic and incremental checkpointing

    Get PDF
    An electrochemical sensor is described for the determination of L-dopa (levodopa; 3,4-dihydroxyphenylalanine). An inkjet-printed carbon nanotube (IJPCNT) electrode was modified with manganese dioxide microspheres by drop-casting. They coating was characterized by field emission scanning electron microscopy, Fourier-transform infrared spectroscopy and X-ray powder diffraction. The sensor, best operated at a working voltage of 0.3 V, has a linear response in the 0.1 to 10 \u3bcM L-dopa concentration range, a 54 nM detection limit, excellent reproducibility, repeatability and selectivity. The amperometric approach was applied to the determination of L-dopa in spiked biological fluids and displayed satisfactory accuracy and precision. Graphical abstract Schematic representation of an amperometric method for determination L-dopa. It is based on the use of inkjet-printed carbon nanotube electrode (IJPCNT) modified with manganese dioxide (MnO2)

    Parallel programming systems for scalable scientific computing

    Get PDF
    High-performance computing (HPC) systems are more powerful than ever before. However, this rise in performance brings with it greater complexity, presenting significant challenges for researchers who wish to use these systems for their scientific work. This dissertation explores the development of scalable programming solutions for scientific computing. These solutions aim to be effective across a diverse range of computing platforms, from personal desktops to advanced supercomputers.To better understand HPC systems, this dissertation begins with a literature review on exascale supercomputers, massive systems capable of performing 10Âč⁞ floating-point operations per second. This review combines both manual and data-driven analyses, revealing that while traditional challenges of exascale computing have largely been addressed, issues like software complexity and data volume remain. Additionally, the dissertation introduces the open-source software tool (called LitStudy) developed for this research.Next, this dissertation introduces two novel programming systems. The first system (called Rocket) is designed to scale all-versus-all algorithms to massive datasets. It features a multi-level software-based cache, a divide-and-conquer approach, hierarchical work-stealing, and asynchronous processing to maximize data reuse, exploit data locality, dynamically balance workloads, and optimize resource utilization. The second system (called Lightning) aims to scale existing single-GPU kernel functions across multiple GPUs, even on different nodes, with minimal code adjustments. Results across eight benchmarks on up to 32 GPUs show excellent scalability.The dissertation concludes by proposing a set of design principles for developing parallel programming systems for scalable scientific computing. These principles, based on lessons from this PhD research, represent significant steps forward in enabling researchers to efficiently utilize HPC systems

    Performance Modeling and Prediction for Dense Linear Algebra

    Full text link
    This dissertation introduces measurement-based performance modeling and prediction techniques for dense linear algebra algorithms. As a core principle, these techniques avoid executions of such algorithms entirely, and instead predict their performance through runtime estimates for the underlying compute kernels. For a variety of operations, these predictions allow to quickly select the fastest algorithm configurations from available alternatives. We consider two scenarios that cover a wide range of computations: To predict the performance of blocked algorithms, we design algorithm-independent performance models for kernel operations that are generated automatically once per platform. For various matrix operations, instantaneous predictions based on such models both accurately identify the fastest algorithm, and select a near-optimal block size. For performance predictions of BLAS-based tensor contractions, we propose cache-aware micro-benchmarks that take advantage of the highly regular structure inherent to contraction algorithms. At merely a fraction of a contraction's runtime, predictions based on such micro-benchmarks identify the fastest combination of tensor traversal and compute kernel

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters
    corecore