5,531 research outputs found

    Course-based Science Research Promotes Learning in Diverse Students at Diverse Institutions

    Full text link
    Course-based research experiences (CREs) are powerful strategies for spreading learning and improving persistence for all students, both science majors and nonscience majors. Here we address the crucial components of CREs (context, discovery, ownership, iteration, communication, presentation) found across a broad range of such courses at a variety of academic institutions. We also address how the design of a CRE should vary according to the background of student participants; no single CRE format is perfect. We provide a framework for implementing CREs across multiple institutional types and several disciplines throughout the typical four years of undergraduate work, designed to a variety of student backgrounds. Our experiences implementing CREs also provide guidance on overcoming barriers to their implementation

    Sustaining Educational Reforms in Introductory Physics

    Full text link
    While it is well known which curricular practices can improve student performance on measures of conceptual understanding, the sustaining of these practices and the role of faculty members in implementing these practices are less well understood. We present a study of the hand-off of Tutorials in Introductory Physics from initial adopters to other instructors at the University of Colorado, including traditional faculty not involved in physics education research. The study examines the impact of implementation of Tutorials on student conceptual learning across eight first-semester, and seven second-semester courses, for fifteen faculty over twelve semesters, and includes roughly 4000 students. It is possible to demonstrate consistently high, and statistically indistinguishable, student learning gains for different faculty members; however, such results are not the norm, and appear to rely on a variety of factors. Student performance varies by faculty background - faculty involved in, or informed by physics education research, consistently post higher student learning gains than less-informed faculty. Student performance in these courses also varies by curricula used - all semesters in which the research-based Tutorials and Learning Assistants are used have higher student learning gains than those semesters that rely on non-research based materials and do not employ Learning Assistants.Comment: 21 pages, 4 figures, and other essential inf

    Measuring Instruction in Higher Education: Summary of a Convening

    Get PDF
    What will it take to improve the quality of instruction in higher education? An important first step is the ability to measure quality. A variety of measurement systems exist, but how informative are they, and how can we bring greater coherence to instructional measurement in higher education?On November 17 -- 18, 2014, the William T. Grant Foundation, the Spencer Foundation, and the Bill & Melinda Gates Foundation sponsored a convening of experts on education and the learning sciences to address these questions and to guide possible future initiatives by the foundations.The report examines incentive structures in colleges and universities, looks at the goals toward which instructional measurement can be directed, describes past and current research on instructional measurement, and summarizes potential future initiatives

    A Flipped Classroom Redesign in General Chemistry

    Get PDF
    The flipped classroom continues to attract significant attention in higher education. Building upon our recent parallel controlled study of the flipped classroom in a second-term general chemistry course (J. Chem. Educ., 2016, 93, 13–23), here we report on a redesign of the flipped course aimed at scaling up total enrollment while keeping discussion sizes small (i.e.,students), and maintaining equivalent contact hour load for faculty and workload for students. To that end, the course format featured lecture contact pushed outside of the classroom in the form of video lectures (mean duration 13 minutes) paired with online homework sets, and three parallel weekly one-hour discussion sections were held in adjoining lab rooms immediately prior to the three-hour laboratory session. As in our previous design, the discussion sections were led by teaching assistants; however, the weekly discussion meeting was shortened from 75 minutes to 50 minutes, and the primary instructor “floated” between the three parallel sessions. Two such sessions were held each week, affording a possible enrollment of 144; initial enrollment was 141, with students self-selecting into the course. We examine student performance in and satisfaction with the course using: (1) a pre-test/post-test design based on the paired questions American Chemical Society (ACS) first-term and second-term exams, (2) data on DFW (D, F, withdrawal) rates, and (3) student evaluations
    • …
    corecore