5,763 research outputs found

    The Quantum Adiabatic Algorithm applied to random optimization problems: the quantum spin glass perspective

    Full text link
    Among various algorithms designed to exploit the specific properties of quantum computers with respect to classical ones, the quantum adiabatic algorithm is a versatile proposition to find the minimal value of an arbitrary cost function (ground state energy). Random optimization problems provide a natural testbed to compare its efficiency with that of classical algorithms. These problems correspond to mean field spin glasses that have been extensively studied in the classical case. This paper reviews recent analytical works that extended these studies to incorporate the effect of quantum fluctuations, and presents also some original results in this direction.Comment: 151 pages, 21 figure

    Heterogeneous aging in spin glasses

    Full text link
    We introduce a set of theoretical ideas that form the basis for an analytical framework capable of describing nonequilibrium dynamics in glassy systems. We test the resulting scenario by comparing its predictions with numerical simulations of short-range spin glasses. Local fluctuations and responses are shown to be connected by a generalized local out-of-equilibrium fluctuation-dissipation relation. Scaling relationships are uncovered for the slow evolution of heterogeneities at all time scales.Comment: Substantially reorganized to improve clarity of exposition. Accepted for publication in Physical Review Letters. 5 pages, 4 figure

    On the freezing of variables in random constraint satisfaction problems

    Full text link
    The set of solutions of random constraint satisfaction problems (zero energy groundstates of mean-field diluted spin glasses) undergoes several structural phase transitions as the amount of constraints is increased. This set first breaks down into a large number of well separated clusters. At the freezing transition, which is in general distinct from the clustering one, some variables (spins) take the same value in all solutions of a given cluster. In this paper we study the critical behavior around the freezing transition, which appears in the unfrozen phase as the divergence of the sizes of the rearrangements induced in response to the modification of a variable. The formalism is developed on generic constraint satisfaction problems and applied in particular to the random satisfiability of boolean formulas and to the coloring of random graphs. The computation is first performed in random tree ensembles, for which we underline a connection with percolation models and with the reconstruction problem of information theory. The validity of these results for the original random ensembles is then discussed in the framework of the cavity method.Comment: 32 pages, 7 figure

    Adsorption transition of a self-avoiding polymer chain onto a rigid rod

    Full text link
    The subject of this work is the adsorption transition of a long flexible self-avoiding polymer chain onto a rigid thin rod. The rod is represented by a cylinder of radius R with a short-ranged attractive surface potential for the chain monomers. General scaling results are obtained by using renormalization group arguments in conjunction with available results for quantum field theories with curved boundaries [McAvity and Osborn 1993 Nucl. Phys. B 394, 728]. Relevant critical exponents are identified and estimated using geometric arguments.Comment: 19 pages, 4 figures. To appear in: J. Phys.: Condens. Matter, special issue dedicated to Lothar Schaefer on the occasion of his 60th birthda

    Nature of the insulating phases in the half-filled ionic Hubbard model

    Full text link
    We investigate the ground-state phase diagram of the one-dimensional "ionic" Hubbard model with an alternating periodic potential at half-filling by numerical diagonalization of finite systems with the Lanczos and density matrix renormalization group (DMRG) methods. We identify an insulator-insulator phase transition from a band to a correlated insulator with simultaneous charge and bond-charge order. The transition point is characterized by the vanishing of the optical excitation gap while simultaneously the charge and spin gaps remain finite and equal. Indications for a possible second transition into a Mott-insulator phase are discussed.Comment: final for

    Higher order corrections to the effective potential close to the jamming transition in the perceptron model

    Full text link
    We analyze the perceptron model performing a Plefka-like expansion of the free energy. This model falls in the same universality class as hard spheres near jamming, allowing to get exact predictions in high dimensions for more complex systems. Our method enables to define an effective potential (or TAP free energy), namely a coarse-grained functional depending on the contact forces and the effective gaps between the particles. The derivation is performed up to the third order, with a particular emphasis on the role of third order corrections to the TAP free energy. These corrections, irrelevant in a mean-field framework in the thermodynamic limit, might instead play a fundamental role when considering finite-size effects. We also study the typical behavior of the forces and we show that two kinds of corrections can occur. The first contribution arises since the system is analyzed at a finite distance from jamming, while the second one is due to finite-size corrections. In our analysis, third order contributions vanish in the jamming limit, both for the potential and the generalized forces, in agreement with the argument proposed by Wyart and coworkers invoking isostaticity. Finally, we analyze the scalings emerging close to the jamming line, which define a crossover regime connecting the control parameters of the model to an effective temperature.Comment: 14 pages, 4 figure
    • …
    corecore