18 research outputs found

    Natural Compression for Distributed Deep Learning

    Full text link
    Modern deep learning models are often trained in parallel over a collection of distributed machines to reduce training time. In such settings, communication of model updates among machines becomes a significant performance bottleneck and various lossy update compression techniques have been proposed to alleviate this problem. In this work, we introduce a new, simple yet theoretically and practically effective compression technique: {\em natural compression (NC)}. Our technique is applied individually to all entries of the to-be-compressed update vector and works by randomized rounding to the nearest (negative or positive) power of two, which can be computed in a "natural" way by ignoring the mantissa. We show that compared to no compression, NC increases the second moment of the compressed vector by not more than the tiny factor \nicefrac{9}{8}, which means that the effect of NC on the convergence speed of popular training algorithms, such as distributed SGD, is negligible. However, the communications savings enabled by NC are substantial, leading to {\em 33-4×4\times improvement in overall theoretical running time}. For applications requiring more aggressive compression, we generalize NC to {\em natural dithering}, which we prove is {\em exponentially better} than the common random dithering technique. Our compression operators can be used on their own or in combination with existing operators for a more aggressive combined effect, and offer new state-of-the-art both in theory and practice.Comment: 8 pages, 20 pages of Appendix, 6 Tables, 14 Figure

    Efficient Communication Acceleration for Next-Gen Scale-up Deep Learning Training Platforms

    Full text link
    Deep Learning (DL) training platforms are built by interconnecting multiple DL accelerators (e.g., GPU/TPU) via fast, customized interconnects. As the size of DL models and the compute efficiency of the accelerators has continued to increase, there has also been a corresponding steady increase in the bandwidth of these interconnects.Systems today provide 100s of gigabytes (GBs) of inter-connect bandwidth via a mix of solutions such as Multi-Chip packaging modules (MCM) and proprietary interconnects(e.g., NVlink) that together from the scale-up network of accelerators. However, as we identify in this work, a significant portion of this bandwidth goes under-utilized. This is because(i) using compute cores for executing collective operations such as all-reduce decreases overall compute efficiency, and(ii) there is memory bandwidth contention between the accesses for arithmetic operations vs those for collectives, and(iii) there are significant internal bus congestions that increase the latency of communication operations. To address this challenge, we propose a novel microarchitecture, calledAccelerator Collectives Engine(ACE), forDL collective communication offload. ACE is a smart net-work interface (NIC) tuned to cope with the high-bandwidth and low latency requirements of scale-up networks and is able to efficiently drive the various scale-up network systems(e.g. switch-based or point-to-point topologies). We evaluate the benefits of the ACE with micro-benchmarks (e.g. single collective performance) and popular DL models using an end-to-end DL training simulator. For modern DL workloads, ACE on average increases the net-work bandwidth utilization by 1.97X, resulting in 2.71X and 1.44X speedup in iteration time for ResNet-50 and GNMT, respectively

    Zen: Near-Optimal Sparse Tensor Synchronization for Distributed DNN Training

    Full text link
    Distributed training is the de facto standard to scale up the training of Deep Neural Networks (DNNs) with multiple GPUs. The performance bottleneck of distributed training lies in communications for gradient synchronization. Recently, practitioners have observed sparsity in gradient tensors, suggesting the potential to reduce the traffic volume in communication and improve end-to-end training efficiency. Yet, the optimal communication scheme to fully leverage sparsity is still missing. This paper aims to address this gap. We first analyze the characteristics of sparse tensors in popular DNN models to understand the fundamentals of sparsity. We then systematically explore the design space of communication schemes for sparse tensors and find the optimal one. % We then find the optimal scheme based on the characteristics by systematically exploring the design space. We also develop a gradient synchronization system called Zen that approximately realizes it for sparse tensors. We demonstrate that Zen can achieve up to 5.09x speedup in communication time and up to 2.48x speedup in training throughput compared to the state-of-the-art methods

    On Biased Compression for Distributed Learning

    Full text link
    In the last few years, various communication compression techniques have emerged as an indispensable tool helping to alleviate the communication bottleneck in distributed learning. However, despite the fact {\em biased} compressors often show superior performance in practice when compared to the much more studied and understood {\em unbiased} compressors, very little is known about them. In this work we study three classes of biased compression operators, two of which are new, and their performance when applied to (stochastic) gradient descent and distributed (stochastic) gradient descent. We show for the first time that biased compressors can lead to linear convergence rates both in the single node and distributed settings. Our {\em distributed} SGD method enjoys the ergodic rate O(δLexp(K)μ+(C+D)Kμ)\mathcal{O}\left(\frac{\delta L \exp(-K) }{\mu} + \frac{(C + D)}{K\mu}\right), where δ\delta is a compression parameter which grows when more compression is applied, LL and μ\mu are the smoothness and strong convexity constants, CC captures stochastic gradient noise (C=0C=0 if full gradients are computed on each node) and DD captures the variance of the gradients at the optimum (D=0D=0 for over-parameterized models). Further, via a theoretical study of several synthetic and empirical distributions of communicated gradients, we shed light on why and by how much biased compressors outperform their unbiased variants. Finally, we propose a new highly performing biased compressor---combination of Top-kk and natural dithering---which in our experiments outperforms all other compression techniques.Comment: 39 pages, 10 Figures, 25 Theorems and Lemmas, 8 New Compression Operators, 2 Algorithm
    corecore