1,358 research outputs found

    TSingNet: Scale-aware and context-rich feature learning for traffic sign detection and recognition in the wild

    Get PDF
    Traffic sign detection and recognition in the wild is a challenging task. Existing techniques are often incapable of detecting small or occluded traffic signs because of the scale variation and context loss, which causes semantic gaps between multiple scales. We propose a new traffic sign detection network (TSingNet), which learns scale-aware and context-rich features to effectively detect and recognize small and occluded traffic signs in the wild. Specifically, TSingNet first constructs an attention-driven bilateral feature pyramid network, which draws on both bottom-up and top-down subnets to dually circulate low-, mid-, and high-level foreground semantics in scale self-attention learning. This is to learn scale-aware foreground features and thus narrow down the semantic gaps between multiple scales. An adaptive receptive field fusion block with variable dilation rates is then introduced to exploit context-rich representation and suppress the influence of occlusion at each scale. TSingNet is end-to-end trainable by joint minimization of the scale-aware loss and multi-branch fusion losses, this adds a few parameters but significantly improves the detection performance. In extensive experiments with three challenging traffic sign datasets (TT100K, STSD and DFG), TSingNet outperformed state-of-the-art methods for traffic sign detection and recognition in the wild

    TRIDEnT: Building Decentralized Incentives for Collaborative Security

    Full text link
    Sophisticated mass attacks, especially when exploiting zero-day vulnerabilities, have the potential to cause destructive damage to organizations and critical infrastructure. To timely detect and contain such attacks, collaboration among the defenders is critical. By correlating real-time detection information (alerts) from multiple sources (collaborative intrusion detection), defenders can detect attacks and take the appropriate defensive measures in time. However, although the technical tools to facilitate collaboration exist, real-world adoption of such collaborative security mechanisms is still underwhelming. This is largely due to a lack of trust and participation incentives for companies and organizations. This paper proposes TRIDEnT, a novel collaborative platform that aims to enable and incentivize parties to exchange network alert data, thus increasing their overall detection capabilities. TRIDEnT allows parties that may be in a competitive relationship, to selectively advertise, sell and acquire security alerts in the form of (near) real-time peer-to-peer streams. To validate the basic principles behind TRIDEnT, we present an intuitive game-theoretic model of alert sharing, that is of independent interest, and show that collaboration is bound to take place infinitely often. Furthermore, to demonstrate the feasibility of our approach, we instantiate our design in a decentralized manner using Ethereum smart contracts and provide a fully functional prototype.Comment: 28 page
    • …
    corecore