47,230 research outputs found

    Pyramid Mask Text Detector

    Full text link
    Scene text detection, an essential step of scene text recognition system, is to locate text instances in natural scene images automatically. Some recent attempts benefiting from Mask R-CNN formulate scene text detection task as an instance segmentation problem and achieve remarkable performance. In this paper, we present a new Mask R-CNN based framework named Pyramid Mask Text Detector (PMTD) to handle the scene text detection. Instead of binary text mask generated by the existing Mask R-CNN based methods, our PMTD performs pixel-level regression under the guidance of location-aware supervision, yielding a more informative soft text mask for each text instance. As for the generation of text boxes, PMTD reinterprets the obtained 2D soft mask into 3D space and introduces a novel plane clustering algorithm to derive the optimal text box on the basis of 3D shape. Experiments on standard datasets demonstrate that the proposed PMTD brings consistent and noticeable gain and clearly outperforms state-of-the-art methods. Specifically, it achieves an F-measure of 80.13% on ICDAR 2017 MLT dataset

    Shape Robust Text Detection with Progressive Scale Expansion Network

    Full text link
    The challenges of shape robust text detection lie in two aspects: 1) most existing quadrangular bounding box based detectors are difficult to locate texts with arbitrary shapes, which are hard to be enclosed perfectly in a rectangle; 2) most pixel-wise segmentation-based detectors may not separate the text instances that are very close to each other. To address these problems, we propose a novel Progressive Scale Expansion Network (PSENet), designed as a segmentation-based detector with multiple predictions for each text instance. These predictions correspond to different `kernels' produced by shrinking the original text instance into various scales. Consequently, the final detection can be conducted through our progressive scale expansion algorithm which gradually expands the kernels with minimal scales to the text instances with maximal and complete shapes. Due to the fact that there are large geometrical margins among these minimal kernels, our method is effective to distinguish the adjacent text instances and is robust to arbitrary shapes. The state-of-the-art results on ICDAR 2015 and ICDAR 2017 MLT benchmarks further confirm the great effectiveness of PSENet. Notably, PSENet outperforms the previous best record by absolute 6.37\% on the curve text dataset SCUT-CTW1500. Code will be available in https://github.com/whai362/PSENet.Comment: 12 pages, 11 figure

    WeText: Scene Text Detection under Weak Supervision

    Full text link
    The requiring of large amounts of annotated training data has become a common constraint on various deep learning systems. In this paper, we propose a weakly supervised scene text detection method (WeText) that trains robust and accurate scene text detection models by learning from unannotated or weakly annotated data. With a "light" supervised model trained on a small fully annotated dataset, we explore semi-supervised and weakly supervised learning on a large unannotated dataset and a large weakly annotated dataset, respectively. For the unsupervised learning, the light supervised model is applied to the unannotated dataset to search for more character training samples, which are further combined with the small annotated dataset to retrain a superior character detection model. For the weakly supervised learning, the character searching is guided by high-level annotations of words/text lines that are widely available and also much easier to prepare. In addition, we design an unified scene character detector by adapting regression based deep networks, which greatly relieves the error accumulation issue that widely exists in most traditional approaches. Extensive experiments across different unannotated and weakly annotated datasets show that the scene text detection performance can be clearly boosted under both scenarios, where the weakly supervised learning can achieve the state-of-the-art performance by using only 229 fully annotated scene text images.Comment: accepted by ICCV201

    Correlation Propagation Networks for Scene Text Detection

    Full text link
    In this work, we propose a novel hybrid method for scene text detection namely Correlation Propagation Network (CPN). It is an end-to-end trainable framework engined by advanced Convolutional Neural Networks. Our CPN predicts text objects according to both top-down observations and the bottom-up cues. Multiple candidate boxes are assembled by a spatial communication mechanism call Correlation Propagation (CP). The extracted spatial features by CNN are regarded as node features in a latticed graph and Correlation Propagation algorithm runs distributively on each node to update the hypothesis of corresponding object centers. The CP process can flexibly handle scale-varying and rotated text objects without using predefined bounding box templates. Benefit from its distributive nature, CPN is computationally efficient and enjoys a high level of parallelism. Moreover, we introduce deformable convolution to the backbone network to enhance the adaptability to long texts. The evaluation on public benchmarks shows that the proposed method achieves state-of-art performance, and it significantly outperforms the existing methods for handling multi-scale and multi-oriented text objects with much lower computation cost

    Detecting Curve Text with Local Segmentation Network and Curve Connection

    Full text link
    Curve text or arbitrary shape text is very common in real-world scenarios. In this paper, we propose a novel framework with the local segmentation network (LSN) followed by the curve connection to detect text in horizontal, oriented and curved forms. The LSN is composed of two elements, i.e., proposal generation to get the horizontal rectangle proposals with high overlap with text and text segmentation to find the arbitrary shape text region within proposals. The curve connection is then designed to connect the local mask to the detection results. We conduct experiments using the proposed framework on two real-world curve text detection datasets and demonstrate the effectiveness over previous approaches

    E2E-MLT - an Unconstrained End-to-End Method for Multi-Language Scene Text

    Full text link
    An end-to-end trainable (fully differentiable) method for multi-language scene text localization and recognition is proposed. The approach is based on a single fully convolutional network (FCN) with shared layers for both tasks. E2E-MLT is the first published multi-language OCR for scene text. While trained in multi-language setup, E2E-MLT demonstrates competitive performance when compared to other methods trained for English scene text alone. The experiments show that obtaining accurate multi-language multi-script annotations is a challenging problem

    Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation

    Full text link
    Previous deep learning based state-of-the-art scene text detection methods can be roughly classified into two categories. The first category treats scene text as a type of general objects and follows general object detection paradigm to localize scene text by regressing the text box locations, but troubled by the arbitrary-orientation and large aspect ratios of scene text. The second one segments text regions directly, but mostly needs complex post processing. In this paper, we present a method that combines the ideas of the two types of methods while avoiding their shortcomings. We propose to detect scene text by localizing corner points of text bounding boxes and segmenting text regions in relative positions. In inference stage, candidate boxes are generated by sampling and grouping corner points, which are further scored by segmentation maps and suppressed by NMS. Compared with previous methods, our method can handle long oriented text naturally and doesn't need complex post processing. The experiments on ICDAR2013, ICDAR2015, MSRA-TD500, MLT and COCO-Text demonstrate that the proposed algorithm achieves better or comparable results in both accuracy and efficiency. Based on VGG16, it achieves an F-measure of 84.3% on ICDAR2015 and 81.5% on MSRA-TD500.Comment: To appear in CVPR201

    Shape Robust Text Detection with Progressive Scale Expansion Network

    Full text link
    Scene text detection has witnessed rapid progress especially with the recent development of convolutional neural networks. However, there still exists two challenges which prevent the algorithm into industry applications. On the one hand, most of the state-of-art algorithms require quadrangle bounding box which is in-accurate to locate the texts with arbitrary shape. On the other hand, two text instances which are close to each other may lead to a false detection which covers both instances. Traditionally, the segmentation-based approach can relieve the first problem but usually fail to solve the second challenge. To address these two challenges, in this paper, we propose a novel Progressive Scale Expansion Network (PSENet), which can precisely detect text instances with arbitrary shapes. More specifically, PSENet generates the different scale of kernels for each text instance, and gradually expands the minimal scale kernel to the text instance with the complete shape. Due to the fact that there are large geometrical margins among the minimal scale kernels, our method is effective to split the close text instances, making it easier to use segmentation-based methods to detect arbitrary-shaped text instances. Extensive experiments on CTW1500, Total-Text, ICDAR 2015 and ICDAR 2017 MLT validate the effectiveness of PSENet. Notably, on CTW1500, a dataset full of long curve texts, PSENet achieves a F-measure of 74.3% at 27 FPS, and our best F-measure (82.2%) outperforms state-of-art algorithms by 6.6%. The code will be released in the future.Comment: Accepted by CVPR 2019. arXiv admin note: substantial text overlap with arXiv:1806.0255

    Image Optimization and Prediction

    Full text link
    Image Processing, Optimization and Prediction of an Image play a key role in Computer Science. Image processing provides a way to analyze and identify an image .Many areas like medical image processing, Satellite images, natural images and artificial images requires lots of analysis and research on optimization. In Image Optimization and Prediction we are combining the features of Query Optimization, Image Processing and Prediction . Image optimization is used in Pattern analysis, object recognition, in medical Image processing to predict the type of diseases, in satellite images for predicting weather forecast, availability of water or mineral etc. Image Processing, Optimization and analysis is a wide open area for research .Lots of research has been conducted in the area of Image analysis and many techniques are available for image analysis but, a single technique is not yet identified for image analysis and prediction .our research is focused on identifying a global technique for image analysis and Prediction.Comment: Pages: 08 Figures: 02, Proceedings of International Conferences CAAM-09 BITS, Durg, India, 10 Jan 200

    Total-Text: A Comprehensive Dataset for Scene Text Detection and Recognition

    Full text link
    Text in curve orientation, despite being one of the common text orientations in real world environment, has close to zero existence in well received scene text datasets such as ICDAR2013 and MSRA-TD500. The main motivation of Total-Text is to fill this gap and facilitate a new research direction for the scene text community. On top of the conventional horizontal and multi-oriented texts, it features curved-oriented text. Total-Text is highly diversified in orientations, more than half of its images have a combination of more than two orientations. Recently, a new breed of solutions that casted text detection as a segmentation problem has demonstrated their effectiveness against multi-oriented text. In order to evaluate its robustness against curved text, we fine-tuned DeconvNet and benchmark it on Total-Text. Total-Text with its annotation is available at https://github.com/cs-chan/Total-Text-DatasetComment: Accepted as Oral presentation in ICDAR2017 (Extended version, 13 pages 17 figures). We introduce a new scene text dataset namely as Total-Text, which is more comprehensive than the existing scene text datasets as it consists of 1555 natural images with more than 3 different text orientations, one of a kin
    corecore