2 research outputs found

    Mesh Interest Point Detection Based on Geometric Measures and Sparse Refinement

    Full text link
    Three dimensional (3D) interest point detection plays a fundamental role in 3D computer vision and graphics. In this paper, we introduce a new method for detecting mesh interest points based on geometric measures and sparse refinement (GMSR). The key point of our approach is to calculate the 3D interest point response function using two intuitive and effective geometric properties of the local surface on a 3D mesh model, namely Euclidean distances between the neighborhood vertices to the tangent plane of a vertex and the angles of normal vectors of them. The response function is defined in multi-scale space and can be utilized to effectively distinguish 3D interest points from edges and flat areas. Those points with local maximal 3D interest point response value are selected as the candidates of 3D interest points. Finally, we utilize an β„“0\ell_0 norm based optimization method to refine the candidates of 3D interest points by constraining its quality and quantity. Numerical experiments demonstrate that our proposed GMSR based 3D interest point detector outperforms current several state-of-the-art methods for different kinds of 3D mesh models.Comment: 17 page

    3D Keypoint Detection Based on Deep Neural Network with Sparse Autoencoder

    Full text link
    Researchers have proposed various methods to extract 3D keypoints from the surface of 3D mesh models over the last decades, but most of them are based on geometric methods, which lack enough flexibility to meet the requirements for various applications. In this paper, we propose a new method on the basis of deep learning by formulating the 3D keypoint detection as a regression problem using deep neural network (DNN) with sparse autoencoder (SAE) as our regression model. Both local information and global information of a 3D mesh model in multi-scale space are fully utilized to detect whether a vertex is a keypoint or not. SAE can effectively extract the internal structure of these two kinds of information and formulate high-level features for them, which is beneficial to the regression model. Three SAEs are used to formulate the hidden layers of the DNN and then a logistic regression layer is trained to process the high-level features produced in the third SAE. Numerical experiments show that the proposed DNN based 3D keypoint detection algorithm outperforms current five state-of-the-art methods for various 3D mesh models.Comment: 13 pages, 6 figure
    corecore