1,291 research outputs found

    Lessons on Eternal Traversable Wormholes in AdS

    Get PDF
    We attempt to construct eternal traversable wormholes connecting two asymptotically AdS regions by introducing a static coupling between their dual CFTs. We prove that there are no semiclassical traversable wormholes with Poincar\'e invariance in the boundary directions in higher than two spacetime dimensions. We critically examine the possibility of evading our result by coupling a large number of bulk fields. Static, traversable wormholes with less symmetry may be possible, and could be constructed using the ingredients we develop here.Comment: 22 pages, 4 figures. v2: minor additions, matches published versio

    From the Flamm-Einstein-Rosen bridge to the modern renaissance of traversable wormholes

    Full text link
    We consider the possibility of multiply-connected spacetimes, ranging from the Flamm-Einstein-Rosen bridge, geons, and the modern renaissance of traversable wormholes. A fundamental property in wormhole physics is the flaring-out condition of the throat, which through the Einstein field equation entails the violation of the null energy condition. In the context of modified theories of gravity, it has also been shown that the normal matter can be imposed to satisfy the energy conditions, and it is the higher order curvature terms, interpreted as a gravitational fluid, that sustain these non-standard wormhole geometries, fundamentally different from their counterparts in general relativity. We explore interesting features of these geometries, in particular, the physical properties and characteristics of these `exotic spacetimes'.Comment: 20 pages. MG14 rapporteur article based on the AT3 parallel session. Includes a brief review of wormhole physics and of the contributions to the AT3 sessio

    Traversable Wormholes Construction in 2+1 Dimensions

    Full text link
    We study traversable Lorentzian wormholes in the three-dimensional low energy string theory by adding some matter source involving a dilaton field. It will be shown that there are two-different types of wormhole solutions such as BTZ and black string wormholes depending on the dilaton backgrounds, respectively. We finally obtain the desirable solutions which confine exotic matter near the throat of wormhole by adjusting NS charge.Comment: 12 pages, 4 figures, JHEP style, one reference adde

    Passage of radiation through wormholes of arbitrary shape

    Full text link
    We study quasinormal modes and scattering properties via calculation of the SS-matrix for scalar and electromagnetic fields propagating in the background of spherically and axially symmetric, traversable Lorentzian wormholes of a generic shape. Such wormholes are described by the Morris-Thorne ansatz and its axially symmetric generalization. The properties of quasinormal ringing and scattering are shown to be determined by the behavior of the wormhole's shape function b(r)b(r) and shift factor Φ(r)\Phi(r) near the throat. In particular, wormholes with the shape function b(r)b(r), such that b(r)1b'(r) \approx 1, have very long-lived quasinormal modes in the spectrum. We have proved that the axially symmetric traversable Lorentzian wormholes, unlike black holes and other compact rotating objects, do not allow for superradiance. As a by product we have shown that the 6th order WKB formula used for scattering problems of black or wormholes provides high accuracy and thus can be used for quite accurate calculations of the Hawking radiation processes around various black holes.Comment: 10 pages, 11 figures, the automatic procedure for calculations of the 6th order WKB quasinormal modes and reflection/transmission coefficients can be found on https://goo.gl/nykYG

    Thin-shell wormholes in d-dimensional general relativity: Solutions, properties, and stability

    Full text link
    We construct thin-shell electrically charged wormholes in d-dimensional general relativity with a cosmological constant. The wormholes constructed can have different throat geometries, namely, spherical, planar and hyperbolic. Unlike the spherical geometry, the planar and hyperbolic geometries allow for different topologies and in addition can be interpreted as higher-dimensional domain walls or branes connecting two universes. In the construction we use the cut-and-paste procedure by joining together two identical vacuum spacetime solutions. Properties such as the null energy condition and geodesics are studied. A linear stability analysis around the static solutions is carried out. A general result for stability is obtained from which previous results are recovered.Comment: 16 pages, 1 figur

    Morris-Thorne wormholes with a cosmological constant

    Get PDF
    First, the ideas introduced in the wormhole research field since the work of Morris and Thorne are briefly reviewed, namely, the issues of energy conditions, wormhole construction, stability, time machines and astrophysical signatures. Then, spherically symmetric and static traversable Morris-Thorne wormholes in the presence of a generic cosmological constant are analyzed. A matching of an interior solution to the unique exterior vacuum solution is done using directly the Einstein equations. The structure as well as several physical properties and characteristics of traversable wormholes due to the effects of the cosmological term are studied. Interesting equations appear in the process of matching. For instance, one finds that for asymptotically flat and anti-de Sitter spacetimes the surface tangential pressure of the thin-shell, at the boundary of the interior and exterior solutions, is always strictly positive, whereas for de Sitter spacetime it can take either sign as one could expect, being negative (tension) for relatively high cosmological constant and high wormhole radius, positive for relatively high mass and small wormhole radius, and zero in-between. Finally, some specific solutions with generic cosmological constant, based on the Morris-Thorne solutions, are provided.Comment: latex, 49 pages, 8 figures. Expanded version of the paper published in Physical Review
    corecore