1 research outputs found

    Seamless, reliable, video multicast in wireless ad hoc networks

    Get PDF
    A wireless ad hoc network is a self-organized and dynamically reconfigurable wireless network without central administration and wired infrastructure. Nodes in a wireless ad hoc network can instantly establish a communication structure while each node moves in an arbitrary manner. A wireless ad hoc network is useful for mobile nodes working in a group to accomplish certain tasks. On the other hand, multicast is a very useful and efficient means of supporting group-oriented applications. Multicast is an essential technology for many applications such as video distribution and group video conferencing, data dissemination, disaster relief and battlefield. Video multicasting over wireless ad hoc networks is bandwidth-efficient compared to multiple unicast sessions. However, video multicasting poses great challenges over wireless ad hoc networks. Video packets are both delay and loss sensitive. In addition, due to nodes mobility, the topology of wireless ad hoc networks is frequently changed. As a result, the established links are continuously broken, causing quality loss and interruption in the received video signal. Other challenges include limited battery life of wireless nodes and lower wireless network capacity compared to wired networks. Video multicast over wireless ad hoc networks has been an active area in recent years. The main objective of these studies is to improve the quality of the received video by exploiting the error resilience properties of Multiple Description Coding (MDC) along with multiple paths. In other words, MD video is encoded and transmitted over two different paths to each destination node. If only one path is broken, packets corresponding to the other description on the other path can still arrive at the destination node on time. Layered Coding (LC) and Multiple Description Coding (MDC) have been proposed as video source coding techniques that are robust against inevitable transmission errors. In contrast to MDC, LC encodes a media source into two or more sub-streams, known as layers, one base layer and several enhancement layers. The base layer can be decoded to provide a basic quality of the received video while the enhancement layers are mainly used to refine the quality of the video that is reconstructed from the base layer. If the base layer is corrupted, the enhancement layers become useless, even if they are received correctly. Therefore, the base layer is critically important and is usually highly protected. For MDC, however, these sub-streams are of equal importance in the sense that each sub-stream, also called a description, can be decoded independently to produce a signal of basic quality. When more descriptions are received, the decoder can gradually increase the quality. One main problem of video multicasting for heterogeneous destinations is the assignment of video descriptions and the construction of multicast tree. However, the assignment of MD video and the construction of multicast tree can greatly affect the user satisfaction (i.e., affect the quality of the received video). In this thesis, we introduce novel approaches to improve the user satisfaction for a set of heterogeneous multicast destinations. The main idea of our approaches is to employ the independent-description property of MDC along with multiple multicast trees. However, many questions are raised: How multiple multicast trees should be constructed? And how MD video should be assigned? Is it better to construct multiple multicast trees first and then assign the video descriptions? Or is it better to assign the video descriptions first and we then construct multiple multicast trees? Should we perform that in a distributed manner or in a centralized one? To answer these questions, we propose different algorithms to construct multiple multicast trees and to assign MD video. The proposed algorithms are: Serial MDC, Distributed MDC, and Centralized MDC. Serial MDC constructs multiple paths, to each destination, and assigns a different video description to each of them. After that, it constructs multiple multicast trees. Distributed MDC assigns MD video and constructs multiple multicast trees in parallel and in distributed fashion. In Centralized MDC, the assignment of MD video and the construction of multiple multicast trees are performed in a centralized manner. However, Centralized MDC first constructs multiple multicast trees and then assigns different video description to each multicast tree. We evaluate and compare our proposed algorithms Under different network conditions. For example, Network size, and multicast group size. Simulation results demonstrate that, indeed, the way of multicast trees construction and the assignment of MD video can greatly affect the user satisfaction. In addition, simulation results show that MDC can achieve higher user satisfaction compared to LC with a small cost in terms of number of pure forwarders nodes, bandwidth utilization, and aggregate tree delay. Furthermore, we use our proposed algorithms to develop different multicast protocols for video multicast over wireless ad hoc networks. Specifically, we propose four protocols, namely, Centralized MDMTR (Multiple Disjoint Multicast Trees Routing), Sequential MDMTR, Distributed MDMTR, and Neighbor-aware MDMTR protocols. These protocols take many issues into consideration, rejoining and joining a multicast group, multicast trees maintenance, and mobility of nodes, for example. We evaluate the performance of our proposed protocols and compare them under different network conditions. For example, multicast group size, and mobility of nodes. Simulation results demonstrate that our protocols perform well compared to other protocols in the literature
    corecore