3,450 research outputs found

    Bounded Coordinate-Descent for Biological Sequence Classification in High Dimensional Predictor Space

    Full text link
    We present a framework for discriminative sequence classification where the learner works directly in the high dimensional predictor space of all subsequences in the training set. This is possible by employing a new coordinate-descent algorithm coupled with bounding the magnitude of the gradient for selecting discriminative subsequences fast. We characterize the loss functions for which our generic learning algorithm can be applied and present concrete implementations for logistic regression (binomial log-likelihood loss) and support vector machines (squared hinge loss). Application of our algorithm to protein remote homology detection and remote fold recognition results in performance comparable to that of state-of-the-art methods (e.g., kernel support vector machines). Unlike state-of-the-art classifiers, the resulting classification models are simply lists of weighted discriminative subsequences and can thus be interpreted and related to the biological problem

    "Influence Sketching": Finding Influential Samples In Large-Scale Regressions

    Full text link
    There is an especially strong need in modern large-scale data analysis to prioritize samples for manual inspection. For example, the inspection could target important mislabeled samples or key vulnerabilities exploitable by an adversarial attack. In order to solve the "needle in the haystack" problem of which samples to inspect, we develop a new scalable version of Cook's distance, a classical statistical technique for identifying samples which unusually strongly impact the fit of a regression model (and its downstream predictions). In order to scale this technique up to very large and high-dimensional datasets, we introduce a new algorithm which we call "influence sketching." Influence sketching embeds random projections within the influence computation; in particular, the influence score is calculated using the randomly projected pseudo-dataset from the post-convergence Generalized Linear Model (GLM). We validate that influence sketching can reliably and successfully discover influential samples by applying the technique to a malware detection dataset of over 2 million executable files, each represented with almost 100,000 features. For example, we find that randomly deleting approximately 10% of training samples reduces predictive accuracy only slightly from 99.47% to 99.45%, whereas deleting the same number of samples with high influence sketch scores reduces predictive accuracy all the way down to 90.24%. Moreover, we find that influential samples are especially likely to be mislabeled. In the case study, we manually inspect the most influential samples, and find that influence sketching pointed us to new, previously unidentified pieces of malware.Comment: fixed additional typo
    • …
    corecore