3,177 research outputs found

    Understanding and Comparing Scalable Gaussian Process Regression for Big Data

    Full text link
    As a non-parametric Bayesian model which produces informative predictive distribution, Gaussian process (GP) has been widely used in various fields, like regression, classification and optimization. The cubic complexity of standard GP however leads to poor scalability, which poses challenges in the era of big data. Hence, various scalable GPs have been developed in the literature in order to improve the scalability while retaining desirable prediction accuracy. This paper devotes to investigating the methodological characteristics and performance of representative global and local scalable GPs including sparse approximations and local aggregations from four main perspectives: scalability, capability, controllability and robustness. The numerical experiments on two toy examples and five real-world datasets with up to 250K points offer the following findings. In terms of scalability, most of the scalable GPs own a time complexity that is linear to the training size. In terms of capability, the sparse approximations capture the long-term spatial correlations, the local aggregations capture the local patterns but suffer from over-fitting in some scenarios. In terms of controllability, we could improve the performance of sparse approximations by simply increasing the inducing size. But this is not the case for local aggregations. In terms of robustness, local aggregations are robust to various initializations of hyperparameters due to the local attention mechanism. Finally, we highlight that the proper hybrid of global and local scalable GPs may be a promising way to improve both the model capability and scalability for big data.Comment: 25 pages, 15 figures, preprint submitted to KB

    Towards a Scalable Dynamic Spatial Database System

    Get PDF
    With the rise of GPS-enabled smartphones and other similar mobile devices, massive amounts of location data are available. However, no scalable solutions for soft real-time spatial queries on large sets of moving objects have yet emerged. In this paper we explore and measure the limits of actual algorithms and implementations regarding different application scenarios. And finally we propose a novel distributed architecture to solve the scalability issues.Comment: (2012

    Neural activity classification with machine learning models trained on interspike interval series data

    Full text link
    The flow of information through the brain is reflected by the activity patterns of neural cells. Indeed, these firing patterns are widely used as input data to predictive models that relate stimuli and animal behavior to the activity of a population of neurons. However, relatively little attention was paid to single neuron spike trains as predictors of cell or network properties in the brain. In this work, we introduce an approach to neuronal spike train data mining which enables effective classification and clustering of neuron types and network activity states based on single-cell spiking patterns. This approach is centered around applying state-of-the-art time series classification/clustering methods to sequences of interspike intervals recorded from single neurons. We demonstrate good performance of these methods in tasks involving classification of neuron type (e.g. excitatory vs. inhibitory cells) and/or neural circuit activity state (e.g. awake vs. REM sleep vs. nonREM sleep states) on an open-access cortical spiking activity dataset
    corecore