10,316 research outputs found

    Scalable multimodal convolutional networks for brain tumour segmentation

    Get PDF
    Brain tumour segmentation plays a key role in computer-assisted surgery. Deep neural networks have increased the accuracy of automatic segmentation significantly, however these models tend to generalise poorly to different imaging modalities than those for which they have been designed, thereby limiting their applications. For example, a network architecture initially designed for brain parcellation of monomodal T1 MRI can not be easily translated into an efficient tumour segmentation network that jointly utilises T1, T1c, Flair and T2 MRI. To tackle this, we propose a novel scalable multimodal deep learning architecture using new nested structures that explicitly leverage deep features within or across modalities. This aims at making the early layers of the architecture structured and sparse so that the final architecture becomes scalable to the number of modalities. We evaluate the scalable architecture for brain tumour segmentation and give evidence of its regularisation effect compared to the conventional concatenation approach.Comment: Paper accepted at MICCAI 201

    An Evaluation of Deep CNN Baselines for Scene-Independent Person Re-Identification

    Full text link
    In recent years, a variety of proposed methods based on deep convolutional neural networks (CNNs) have improved the state of the art for large-scale person re-identification (ReID). While a large number of optimizations and network improvements have been proposed, there has been relatively little evaluation of the influence of training data and baseline network architecture. In particular, it is usually assumed either that networks are trained on labeled data from the deployment location (scene-dependent), or else adapted with unlabeled data, both of which complicate system deployment. In this paper, we investigate the feasibility of achieving scene-independent person ReID by forming a large composite dataset for training. We present an in-depth comparison of several CNN baseline architectures for both scene-dependent and scene-independent ReID, across a range of training dataset sizes. We show that scene-independent ReID can produce leading-edge results, competitive with unsupervised domain adaption techniques. Finally, we introduce a new dataset for comparing within-camera and across-camera person ReID.Comment: To be published in 2018 15th Conference on Computer and Robot Vision (CRV

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system
    • …
    corecore