1,528 research outputs found

    Topic Similarity Networks: Visual Analytics for Large Document Sets

    Full text link
    We investigate ways in which to improve the interpretability of LDA topic models by better analyzing and visualizing their outputs. We focus on examining what we refer to as topic similarity networks: graphs in which nodes represent latent topics in text collections and links represent similarity among topics. We describe efficient and effective approaches to both building and labeling such networks. Visualizations of topic models based on these networks are shown to be a powerful means of exploring, characterizing, and summarizing large collections of unstructured text documents. They help to "tease out" non-obvious connections among different sets of documents and provide insights into how topics form larger themes. We demonstrate the efficacy and practicality of these approaches through two case studies: 1) NSF grants for basic research spanning a 14 year period and 2) the entire English portion of Wikipedia.Comment: 9 pages; 2014 IEEE International Conference on Big Data (IEEE BigData 2014

    Distributed Graph Clustering using Modularity and Map Equation

    Full text link
    We study large-scale, distributed graph clustering. Given an undirected graph, our objective is to partition the nodes into disjoint sets called clusters. A cluster should contain many internal edges while being sparsely connected to other clusters. In the context of a social network, a cluster could be a group of friends. Modularity and map equation are established formalizations of this internally-dense-externally-sparse principle. We present two versions of a simple distributed algorithm to optimize both measures. They are based on Thrill, a distributed big data processing framework that implements an extended MapReduce model. The algorithms for the two measures, DSLM-Mod and DSLM-Map, differ only slightly. Adapting them for similar quality measures is straight-forward. We conduct an extensive experimental study on real-world graphs and on synthetic benchmark graphs with up to 68 billion edges. Our algorithms are fast while detecting clusterings similar to those detected by other sequential, parallel and distributed clustering algorithms. Compared to the distributed GossipMap algorithm, DSLM-Map needs less memory, is up to an order of magnitude faster and achieves better quality.Comment: 14 pages, 3 figures; v3: Camera ready for Euro-Par 2018, more details, more results; v2: extended experiments to include comparison with competing algorithms, shortened for submission to Euro-Par 201
    • …
    corecore