5 research outputs found

    Does Continual Learning = Catastrophic Forgetting?

    Full text link
    Continual learning is known for suffering from catastrophic forgetting, a phenomenon where earlier learned concepts are forgotten at the expense of more recent samples. In this work, we challenge the assumption that continual learning is inevitably associated with catastrophic forgetting by presenting a set of tasks that surprisingly do not suffer from catastrophic forgetting when learned continually. We provide evidence that these reconstruction-type tasks exhibit positive forward transfer and that single-view 3D shape reconstruction improves the performance on learned and novel categories over time. We provide the novel analysis of knowledge transfer ability by looking at the output distribution shift across sequential learning tasks. Finally, we show that the robustness of these tasks leads to the potential of having a proxy representation learning task for continual classification. The codebase, dataset, and pre-trained models released with this article can be found at https://github.com/rehg-lab/CLRec

    Model Zoo: A Growing "Brain" That Learns Continually

    Full text link
    This paper argues that continual learning methods can benefit by splitting the capacity of the learner across multiple models. We use statistical learning theory and experimental analysis to show how multiple tasks can interact with each other in a non-trivial fashion when a single model is trained on them. The generalization error on a particular task can improve when it is trained with synergistic tasks, but can also deteriorate when trained with competing tasks. This theory motivates our method named Model Zoo which, inspired from the boosting literature, grows an ensemble of small models, each of which is trained during one episode of continual learning. We demonstrate that Model Zoo obtains large gains in accuracy on a variety of continual learning benchmark problems
    corecore