3,658 research outputs found

    3-D Statistical Channel Model for Millimeter-Wave Outdoor Mobile Broadband Communications

    Full text link
    This paper presents an omnidirectional spatial and temporal 3-dimensional statistical channel model for 28 GHz dense urban non-line of sight environments. The channel model is developed from 28 GHz ultrawideband propagation measurements obtained with a 400 megachips per second broadband sliding correlator channel sounder and highly directional, steerable horn antennas in New York City. A 3GPP-like statistical channel model that is easy to implement in software or hardware is developed from measured power delay profiles and a synthesized method for providing absolute propagation delays recovered from 3-D ray-tracing, as well as measured angle of departure and angle of arrival power spectra. The extracted statistics are used to implement a MATLAB-based statistical simulator that generates 3-D millimeter-wave temporal and spatial channel coefficients that reproduce realistic impulse responses of measured urban channels. The methods and model presented here can be used for millimeter-wave system-wide simulations, and air interface design and capacity analyses.Comment: 7 pages, 6 figures, ICC 2015 (London, UK, to appear

    Accuracy vs. Complexity for mmWave Ray-Tracing: A Full Stack Perspective

    Full text link
    The millimeter wave (mmWave) band will provide multi-gigabits-per-second connectivity in the radio access of future wireless systems. The high propagation loss in this portion of the spectrum calls for the deployment of large antenna arrays to compensate for the loss through high directional gain, thus introducing a spatial dimension in the channel model to accurately represent the performance of a mmWave network. In this perspective, ray-tracing can characterize the channel in terms of Multi Path Components (MPCs) to provide a highly accurate model, at the price of extreme computational complexity (e.g., for processing detailed environment information about the propagation), which limits the scalability of the simulations. In this paper, we present possible simplifications to improve the trade-off between accuracy and complexity in ray-tracing simulations at mmWaves by reducing the total number of MPCs. The effect of such simplifications is evaluated from a full-stack perspective through end-to-end simulations, testing different configuration parameters, propagation scenarios, and higher-layer protocol implementations. We then provide guidelines on the optimal degree of simplification, for which it is possible to reduce the complexity of simulations with a minimal reduction in accuracy for different deployment scenarios.Comment: 31 pages, 14 figures, 1 table. This paper has been submitted to IEEE for publication. Copyright IEEE 2020. Please cite it as: Mattia Lecci, Paolo Testolina, Michele Polese, Marco Giordani, Michele Zorzi, "Accuracy vs. Complexity for mmWave Ray-Tracing: A Full Stack Perspective.'
    • …
    corecore