4,366 research outputs found

    Scalable Link Prediction in Dynamic Networks via Non-Negative Matrix Factorization

    Full text link
    We propose a scalable temporal latent space model for link prediction in dynamic social networks, where the goal is to predict links over time based on a sequence of previous graph snapshots. The model assumes that each user lies in an unobserved latent space and interactions are more likely to form between similar users in the latent space representation. In addition, the model allows each user to gradually move its position in the latent space as the network structure evolves over time. We present a global optimization algorithm to effectively infer the temporal latent space, with a quadratic convergence rate. Two alternative optimization algorithms with local and incremental updates are also proposed, allowing the model to scale to larger networks without compromising prediction accuracy. Empirically, we demonstrate that our model, when evaluated on a number of real-world dynamic networks, significantly outperforms existing approaches for temporal link prediction in terms of both scalability and predictive power.Comment: Technical report for paper "Scalable Temporal Latent Space Inference for Link Prediction in Dynamic Social Networks" that appears in IEEE Transactions on Knowledge and Data Engineering 201

    Community Specific Temporal Topic Discovery from Social Media

    Full text link
    Studying temporal dynamics of topics in social media is very useful to understand online user behaviors. Most of the existing work on this subject usually monitors the global trends, ignoring variation among communities. Since users from different communities tend to have varying tastes and interests, capturing community-level temporal change can improve the understanding and management of social content. Additionally, it can further facilitate the applications such as community discovery, temporal prediction and online marketing. However, this kind of extraction becomes challenging due to the intricate interactions between community and topic, and intractable computational complexity. In this paper, we take a unified solution towards the community-level topic dynamic extraction. A probabilistic model, CosTot (Community Specific Topics-over-Time) is proposed to uncover the hidden topics and communities, as well as capture community-specific temporal dynamics. Specifically, CosTot considers text, time, and network information simultaneously, and well discovers the interactions between community and topic over time. We then discuss the approximate inference implementation to enable scalable computation of model parameters, especially for large social data. Based on this, the application layer support for multi-scale temporal analysis and community exploration is also investigated. We conduct extensive experimental studies on a large real microblog dataset, and demonstrate the superiority of proposed model on tasks of time stamp prediction, link prediction and topic perplexity.Comment: 12 pages, 16 figures, submitted to VLDB 201

    Learning Dynamic Embeddings from Temporal Interactions

    Full text link
    Modeling a sequence of interactions between users and items (e.g., products, posts, or courses) is crucial in domains such as e-commerce, social networking, and education to predict future interactions. Representation learning presents an attractive solution to model the dynamic evolution of user and item properties, where each user/item can be embedded in a euclidean space and its evolution can be modeled by dynamic changes in embedding. However, existing embedding methods either generate static embeddings, treat users and items independently, or are not scalable. Here we present JODIE, a coupled recurrent model to jointly learn the dynamic embeddings of users and items from a sequence of user-item interactions. JODIE has three components. First, the update component updates the user and item embedding from each interaction using their previous embeddings with the two mutually-recursive Recurrent Neural Networks. Second, a novel projection component is trained to forecast the embedding of users at any future time. Finally, the prediction component directly predicts the embedding of the item in a future interaction. For models that learn from a sequence of interactions, traditional training data batching cannot be done due to complex user-user dependencies. Therefore, we present a novel batching algorithm called t-Batch that generates time-consistent batches of training data that can run in parallel, giving massive speed-up. We conduct six experiments on two prediction tasks---future interaction prediction and state change prediction---using four real-world datasets. We show that JODIE outperforms six state-of-the-art algorithms in these tasks by up to 22.4%. Moreover, we show that JODIE is highly scalable and up to 9.2x faster than comparable models. As an additional experiment, we illustrate that JODIE can predict student drop-out from courses five interactions in advance

    A Class of Temporal Hierarchical Exponential Random Graph Models for Longitudinal Network Data

    Full text link
    As a representation of relational data over time series, longitudinal networks provide opportunities to study link formation processes. However, networks at scale often exhibits community structure (i.e. clustering), which may confound local structural effects if it is not considered appropriately in statistical analysis. To infer the (possibly) evolving clusters and other network structures (e.g. degree distribution and/or transitivity) within each community, simultaneously, we propose a class of statistical models named Temporal Hierarchical Exponential Random Graph Models (THERGM). Our generative model imposes a Markovian transition matrix for nodes to change their membership, and assumes they join new community in a preferential attachment way. For those remaining in the same cluster, they follow a specific temporal ERG model (TERGM). While a direct MCMC based Bayesian estimation is computational infeasible, we propose a two-stage strategy. At the first stage, a specific dynamic latent space model will be used as the working model for clustering. At the second stage, estimated memberships are taken as given to fit a TERG model in each cluster. We evaluate our methods on simulated data in terms of the mis-clustering rate, as well as the goodness of fit and link prediction accuracy

    Sequential Edge Clustering in Temporal Multigraphs

    Full text link
    Interaction graphs, such as those recording emails between individuals or transactions between institutions, tend to be sparse yet structured, and often grow in an unbounded manner. Such behavior can be well-captured by structured, nonparametric edge-exchangeable graphs. However, such exchangeable models necessarily ignore temporal dynamics in the network. We propose a dynamic nonparametric model for interaction graphs that combine the sparsity of the exchangeable models with dynamic clustering patterns that tend to reinforce recent behavioral patterns. We show that our method yields improved held-out likelihood over stationary variants, and impressive predictive performance against a range of state-of-the-art dynamic interaction graph models

    Models for Capturing Temporal Smoothness in Evolving Networks for Learning Latent Representation of Nodes

    Full text link
    In a dynamic network, the neighborhood of the vertices evolve across different temporal snapshots of the network. Accurate modeling of this temporal evolution can help solve complex tasks involving real-life social and interaction networks. However, existing models for learning latent representation are inadequate for obtaining the representation vectors of the vertices for different time-stamps of a dynamic network in a meaningful way. In this paper, we propose latent representation learning models for dynamic networks which overcome the above limitation by considering two different kinds of temporal smoothness: (i) retrofitted, and (ii) linear transformation. The retrofitted model tracks the representation vector of a vertex over time, facilitating vertex-based temporal analysis of a network. On the other hand, linear transformation based model provides a smooth transition operator which maps the representation vectors of all vertices from one temporal snapshot to the next (unobserved) snapshot-this facilitates prediction of the state of a network in a future time-stamp. We validate the performance of our proposed models by employing them for solving the temporal link prediction task. Experiments on 9 real-life networks from various domains validate that the proposed models are significantly better than the existing models for predicting the dynamics of an evolving network

    Link Prediction in Social Networks: the State-of-the-Art

    Full text link
    In social networks, link prediction predicts missing links in current networks and new or dissolution links in future networks, is important for mining and analyzing the evolution of social networks. In the past decade, many works have been done about the link prediction in social networks. The goal of this paper is to comprehensively review, analyze and discuss the state-of-the-art of the link prediction in social networks. A systematical category for link prediction techniques and problems is presented. Then link prediction techniques and problems are analyzed and discussed. Typical applications of link prediction are also addressed. Achievements and roadmaps of some active research groups are introduced. Finally, some future challenges of the link prediction in social networks are discussed.Comment: 38 pages, 13 figures, Science China: Information Science, 201

    Unifying Local and Global Change Detection in Dynamic Networks

    Full text link
    Many real-world networks are complex dynamical systems, where both local (e.g., changing node attributes) and global (e.g., changing network topology) processes unfold over time. Local dynamics may provoke global changes in the network, and the ability to detect such effects could have profound implications for a number of real-world problems. Most existing techniques focus individually on either local or global aspects of the problem or treat the two in isolation from each other. In this paper we propose a novel network model that simultaneously accounts for both local and global dynamics. To the best of our knowledge, this is the first attempt at modeling and detecting local and global change points on dynamic networks via a unified generative framework. Our model is built upon the popular mixed membership stochastic blockmodels (MMSB) with sparse co-evolving patterns. We derive an efficient stochastic gradient Langevin dynamics (SGLD) sampler for our proposed model, which allows it to scale to potentially very large networks. Finally, we validate our model on both synthetic and real-world data and demonstrate its superiority over several baselines

    A Survey of Heterogeneous Information Network Analysis

    Full text link
    Most real systems consist of a large number of interacting, multi-typed components, while most contemporary researches model them as homogeneous networks, without distinguishing different types of objects and links in the networks. Recently, more and more researchers begin to consider these interconnected, multi-typed data as heterogeneous information networks, and develop structural analysis approaches by leveraging the rich semantic meaning of structural types of objects and links in the networks. Compared to widely studied homogeneous network, the heterogeneous information network contains richer structure and semantic information, which provides plenty of opportunities as well as a lot of challenges for data mining. In this paper, we provide a survey of heterogeneous information network analysis. We will introduce basic concepts of heterogeneous information network analysis, examine its developments on different data mining tasks, discuss some advanced topics, and point out some future research directions.Comment: 45 pages, 12 figure

    E-LSTM-D: A Deep Learning Framework for Dynamic Network Link Prediction

    Full text link
    Predicting the potential relations between nodes in networks, known as link prediction, has long been a challenge in network science. However, most studies just focused on link prediction of static network, while real-world networks always evolve over time with the occurrence and vanishing of nodes and links. Dynamic network link prediction thus has been attracting more and more attention since it can better capture the evolution nature of networks, but still most algorithms fail to achieve satisfied prediction accuracy. Motivated by the excellent performance of Long Short-Term Memory (LSTM) in processing time series, in this paper, we propose a novel Encoder-LSTM-Decoder (E-LSTM-D) deep learning model to predict dynamic links end to end. It could handle long term prediction problems, and suits the networks of different scales with fine-tuned structure. To the best of our knowledge, it is the first time that LSTM, together with an encoder-decoder architecture, is applied to link prediction in dynamic networks. This new model is able to automatically learn structural and temporal features in a unified framework, which can predict the links that never appear in the network before. The extensive experiments show that our E-LSTM-D model significantly outperforms newly proposed dynamic network link prediction methods and obtain the state-of-the-art results.Comment: 12 pages, 6 figure
    corecore